
The Whopper™ has been Burger King’s signature sandwich since 1957.
One Double Whopper with cheese provides 53 grams of protein—all the
protein you need in a day. It also supplies 1020 calories and 65 grams 
of fat. The Daily Value (based on a 2000-calorie diet) for fat is 65 grams.

So after a Double Whopper you’ll want the rest of your calories that day to be
fat-free.1

Of course, the Whopper isn’t the only item Burger King sells. How are fat
and protein related on the entire BK menu? The scatterplot of the Fat (in grams)
versus the Protein (in grams) for foods sold at Burger King shows a positive, mod-
erately strong, linear relationship.
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WHO Items on the Burger
King menu

WHAT Protein content and
total fat content

UNITS Grams of protein
Grams of fat

HOW Supplied by BK on
request or at their 
Web site
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FIGURE 8.1
Total Fat versus Protein for 30 items on the
BK menu. The Double Whopper is in the 
upper right corner. It’s extreme, but is it 
out of line?Video: Manatees and

Motorboats. Are motorboats
killing more manatees in Florida?
Here’s the story on video.

If you want 25 grams of protein in your lunch, how much fat should you ex-
pect to consume at Burger King? The correlation between Fat and Protein is 0.83, a
sign that the linear association seen in the scatterplot is fairly strong. But strength
of the relationship is only part of the picture. The correlation says, “The linear as-
sociation between these two variables is fairly strong,” but it doesn’t tell us what
the line is.

1 Sorry about the fries.

Activity: Linear Equations.
For a quick review of linear
equations, view this activity and
play with the interactive tool.
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Now we can say more. We can model the relationship with a line and give its
equation. The equation will let us predict the fat content for any Burger King
food, given its amount of protein.

We met our first model in Chapter 6. We saw there that we can specify a Nor-
mal model with two parameters: its mean and standard deviation .

For the Burger King foods, we’d choose a linear model to describe the rela-
tionship between Protein and Fat. The linear model is just an equation of a
straight line through the data. Of course, no line can go through all the points, but
a linear model can summarize the general pattern with only a couple of parame-
ters. Like all models of the real world, the line will be wrong—wrong in the sense
that it can’t match reality exactly. But it can help us understand how the variables
are associated.

Residuals
Not only can’t we draw a line through all the points, the best line might not
even hit any of the points. Then how can it be the “best” line? We want to
find the line that somehow comes closer to all the points than any other line.
Some of the points will be above the line and some below. For example, the
line might suggest that a BK Broiler chicken sandwich with 30 grams of pro-
tein should have 36 grams of fat when, in fact, it actually has only 25 grams
of fat. We call the estimate made from a model the predicted value, and
write it as (called y-hat) to distinguish it from the true value y (called, uh, y).
The difference between the observed value and its associated predicted
value is called the residual. The residual value tells us how far off the
model’s prediction is at that point. The BK Broiler chicken residual would

be of fat.
To find the residuals, we always subtract the predicted

value from the observed one. The negative residual tells us
that the actual fat content of the BK Broiler chicken is about
11 grams less than the model predicts for a typical Burger
King menu item with 30 grams of protein.

Our challenge now is how to find the right line.

“Best Fit” Means Least Squares
When we draw a line through a scatterplot, some residuals are positive and
some negative. We can’t assess how well the line fits by adding up all the
residuals—the positive and negative ones would just cancel each other out. We
faced the same issue when we calculated a standard deviation to measure

spread. And we deal with it the same way here: by
squaring the residuals. Squaring makes them all
positive. Now we can add them up. Squaring also
emphasizes the large residuals. After all, points
near the line are consistent with the model, but
we’re more concerned about points far from the
line. When we add all the squared residuals to-
gether, that sum indicates how well the line we
drew fits the data—the smaller the sum, the better
the fit. A different line will produce a different sum,
maybe bigger, maybe smaller. The line of best fit is
the line for which the sum of the squared residuals
is smallest, the least squares line.

y - yN = 25 - 36 = -11 g

yN

1s21m2

Who’s on First
In 1805, Legendre was the first to publish the “least squares”
solution to the problem of fitting a line to data when the
points don’t all fall exactly on the line.The main challenge
was how to distribute the errors “fairly.” After considerable
thought, he decided to minimize the sum of the squares of
what we now call the residuals. When Legendre published
his paper, though, Gauss claimed he had been using the
method since 1795. Gauss later referred to the  “least
squares”solution as “our method” (principium nostrum), which
certainly didn’t help his relationship with Legendre.

Activity: The Least
Squares Criterion. Does your
sense of “best fit” look like the
least squares line?

“Statisticians, like artists, have
the bad habit of falling in love
with their models.”

—George Box, famous
statistician
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A negative residual means the predicted value is too
big—an overestimate. And a positive residual shows
that the model makes an underestimate.These may
seem backwards until you think about them.

residual = observed value - predicted value

Activity: Residuals.
Residuals are the basis for fitting
lines to scatterplots. See how
they work.
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You might think that finding this line would be pretty hard. Surprisingly,
it’s not, although it was an exciting mathematical discovery when Legendre
published it in 1805 (see margin note on previous page).

Correlation and the Line
If you suspect that what we know about correlation can lead us to the equation of
the linear model, you’re headed in the right direction. It turns out that it’s not a
very big step. In Chapter 7 we learned a lot about how correlation worked by
looking at a scatterplot of the standardized variables. Here’s a scatterplot of 
(standardized Fat) vs. (standardized Protein).

What line would you choose to model the relationship of the standardized
values? Let’s start at the center of the scatterplot. How much protein and fat does
a typical Burger King food item provide? If it has average protein content, , what
about its fat content? If you guessed that its fat content should be about average,

, as well, then you’ve discovered the first property of the line we’re looking for.
The line must go through the point ( ). In the plot of z-scores, then, the line
passes through the origin (0, 0).

You might recall that the equation for a line that passes through the origin can
be written with just a slope and no intercept:

The coordinates of our standardized points aren’t written (x, y); their coordinates
are z-scores: ( ). We’ll need to change our equation to show that. And we’ll
need to indicate that the point on the line corresponding to a particular is ,
the model’s estimate of the actual value of So our equation becomes

Many lines with different slopes pass through the origin. Which one fits our
data the best? That is, which slope determines the line that minimizes the sum of
the squared residuals? It turns out that the best choice for m is the correlation co-
efficient itself, r! (You must really wonder where that stunning assertion comes
from. Check the Math Box.)

Wow! This line has an equation that’s about as simple as we could possibly
hope for:

Great. It’s simple, but what does it tell us? It says that in moving one standard
deviation from the mean in x, we can expect to move about r standard deviations
away from the mean in y. Now that we’re thinking about least squares lines, the
correlation is more than just a vague measure of strength of association. It’s a
great way to think about what the model tells us.

Let’s be more specific. For the sandwiches, the correlation is 0.83. If we stan-
dardize both protein and fat, we can write

This model tells us that for every standard deviation above (or below) the mean a
sandwich is in protein, we’ll predict that its fat content is 0.83 standard deviations
above (or below) the mean fat content. A double hamburger has 31 grams of pro-
tein, about 1 SD above the mean. Putting 1.0 in for 
value of 0.83. If you trust the model, you’d expect the fat content to be about 0.83
fat SDs above the mean fat level. Moving one standard deviation away from the
mean in x moves our estimate r standard deviations away from the mean in y.

If there’s no linear relationship. The line is horizontal, and no matter
how many standard deviations you move in x, the predicted value for y doesn’t

r = 0,

NProtein zFat

zN Fat = 0.83zProtein.

zN y = rzx.

zN y = mzx.

zy.
zN yzx

zx, zy

y = mx.

x, y
y

x

zx

zy

z Protein

z Fat

1

2

–1

–1
1 2

FIGURE 8.2
The Burger King scatterplot in 
z-scores.

NOTATION ALERT:
“Putting a hat on it” is
standard Statistics notation to
indicate that something has
been predicted by a model.
Whenever you see a hat over a
variable name or symbol, you
can assume it is the predicted
version of that variable or
symbol (and look around for
the model).

rsy

1sx
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z  Fat
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FIGURE 8.3
Standardized fat vs. standardized pro-
tein with the regression line. Each one
standard deviation change in protein
results in a predicted change of r stan-
dard deviations in fat.

sum of areas of residual squares as
you drag a line across a scatterplot.
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change. On the other hand, if or there’s a perfect linear association.
In that case, moving any number of standard deviations in x moves exactly the
same number of standard deviations in y. In general, moving any number of stan-
dard deviations in x moves r times that number of standard deviations in y.

-1.0,r = 1.0

JUST CHECKING
A scatterplot of house Price (in thousands of dollars) vs. house Size (in thousands of square feet)

for houses sold recently in Saratoga, NY shows a relationship that is straight, with only moderate scat-
ter and no outliers. The correlation between house Price and house Size is 0.77.

1. You go to an open house and find that the house is 1 standard deviation above the mean in size.
What would you guess about its price?

2. You read an ad for a house priced 2 standard deviations below the mean. What would you guess
about its size?

3. A friend tells you about a house whose size in square meters (he’s European) is 1.5 standard devia-
tions above the mean. What would you guess about its size in square feet?

How Big Can Predicted Values Get?
Suppose you were told that a new male student was about to join the class, and
you were asked to guess his height in inches. What would be your guess? A safe
guess would be the mean height of male students. Now suppose you are also told
that this student has a grade point average (GPA) of 3.9—about 2 SDs above the
mean GPA. Would that change your guess? Probably not. The correlation between
GPA and height is near 0, so knowing the GPA value doesn’t tell you anything and
doesn’t move your guess. (And the equation tells us that as well, since it says that
we should move from the mean.)

On the other hand, suppose you were told that, measured in centimeters, the
student’s height was 2 SDs above the mean. There’s a perfect correlation between
height in inches and height in centimeters, so you’d know he’s 2 SDs above mean
height in inches as well. (The equation would tell us to move from the
mean.)

What if you’re told that the student is 2 SDs above the mean in shoe size?
Would you still guess that he’s of average height? You might guess that he’s taller

than average, since there’s a positive correlation between height
and shoe size. But would you guess that he’s 2 SDs above the
mean? When there was no correlation, we didn’t move away
from the mean at all. With a perfect correlation, we moved our
guess the full 2 SDs. Any correlation between these extremes
should lead us to move somewhere between 0 and 2 SDs above
the mean. (To be exact, the equation tells us to move stan-
dard deviations away from the mean.)

Notice that if x is 2 SDs above its mean, we won’t ever guess
more than 2 SDs away for , since r can’t be bigger than 1.0.2

So, each predicted y tends to be closer to its mean (in standard
deviations) than its corresponding x was. This property of the
linear model is called regression to the mean, and the line is
called the regression line.

y

r * 2

1.0 * 2 SDs

0 * 2 SDs

Sir Francis Galton was the first to speak
of “regression,” although others had fit
lines to data by the same method.

The First Regression
Sir Francis Galton related the heights of sons to
the heights of their fathers with a regression line.
The slope of his line was less than 1.That is, sons
of tall fathers were tall, but not as much above the
average height as their fathers had been above
their mean. Sons of short fathers were short, but
generally not as far from their mean as their
fathers. Galton interpreted the slope correctly 
as indicating a “regression” toward the mean
height—and “regression” stuck as a description
of the method he had used to find the line.

2 In the last chapter we asserted that correlations max out at 1, but we never actually proved
that. Here’s yet another reason to check out the Math Box on the next page.
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MATH BOX

Where does the equation of the line of best fit come from? To write the equation of any line, we
need to know a point on the line and the slope. The point is easy. Consider the BK menu exam-
ple. Since it is logical to predict that a sandwich with average protein will contain average fat,
the line passes through the point .3

To think about the slope, we look once again at the z-scores. We need to remember a few
things:

1. The mean of any set of z-scores is 0. This tells us that the line that best fits the z-scores passes
through the origin (0,0).

2. The standard deviation of a set of z-scores is 1, so the variance is also 1. This means that

a fact that will be important soon.

3. The correlation is also important soon.

Ready? Remember that our objective is to find the slope of the best fit line. Because it passes
through the origin, its equation will be of the form We want to find the value for m that
will minimize the sum of the squared residuals. Actually we’ll divide that sum by and
minimize this “mean squared residual,” or MSR. Here goes:

Minimize: 

Since 

Square the binomial:

Rewrite the summation:

4. Substitute from (2) and (3):

Wow! That simplified nicely! And as a bonus, the last expression is quadratic. Remember
parabolas from algebra class? A parabola in the form reaches its minimum at 

its turning point, which occurs when We can minimize the mean of squared residuals

by choosing 

Wow, again! The slope of the best fit line for z-scores is the correlation, r. This stunning fact
immediately leads us to two important additional results, listed below. As you read on in the
text, we explain them in the context of our continuing discussion of Burger King foods.

• A slope of r for z-scores means that for every increase of 1 standard deviation in there is 
an increase of r standard deviations in “Over one, up r,” as you probably said in algebra
class. Translate that back to the original x and y values: “Over one standard deviation in x, 
up r standard deviations in ”

That’s it! In x- and y-values, the slope of the regression line is b =

rsy

sx
.

yN .

zN y.
zx

m =

-1-2r2

2112
= r.

x =

-b
2a

.

y = ax2
+ bx + c

= 1 - 2mr + m2

=

a zy
2

n - 1 - 2m 
a zxzy

n - 1 + m2 
a zx

2

n - 1

=

a 1zy
2

- 2mzxzy + m2zx
22

n - 1

MSR =

a 1zy - mzx2
2

n - 1zny = mzx:

MSR =

a 1zy - ẑy2
2

n - 1

n - 1
zN y = mzx.

r =

a zxzy

n - 1
,

a 1zy - zy2
2

n - 1 =

a 1zy - 022

n - 1 =

a zy
2

n - 1 = 1,

1x, y2

3 It’s actually not hard to prove this too.
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The Regression Line in Real Units
When you read the Burger King menu, you probably don’t think in z-scores. But
you might want to know the fat content in grams for a specific amount of protein
in grams.

How much fat should we predict for a double hamburger with 31 grams of
protein? The mean protein content is near 17 grams and the standard deviation is
14, so that item is 1 SD above the mean. Since we predict the fat content
will be 0.83 SDs above the mean fat content. Great. How much fat is that? Well, the
mean fat content is 23.5 grams and the standard deviation of fat content is 16.4, so
we predict that the double hamburger will have grams
of fat.

We can always convert both x and y to z-scores, find the correlation, use
, and then convert back to its original units so that we can understand

the prediction. But can’t we do this more simply?
Yes. Let’s write the equation of the line for protein and fat—that is, the actual

x and y values rather than their z-scores. In Algebra class you may have once seen
lines written in the form . Statisticians do exactly the same thing, but
with different notation:

In this equation, is the y-intercept, the value of y where the line crosses the
y-axis, and is the slope.4

First we find the slope, using the formula we developed in the Math Box.5 Re-
member? We know that our model predicts that for each increase of one standard
deviation in protein we’ll see an increase of about 0.83 standard deviations in fat.

In other words, the slope of the line in original units is

Next, how do we find the y-intercept, ? Remember that the line has to go
through the mean-mean point ( ). In other words, the model predicts to be the
value that corresponds to . We can put the means into the equation and write

.
Solving for , we see that the intercept is just .b0 = y - b1xb0

y = b0 + b1x
x

yx, y
b0

b1 =

rsy

sx
=

0.83 * 16.4 g fat

14 g protein
= 0.97 grams of fat per gram of protein.

b1

b0

yN = b0 + b1x.

y = mx + b

zNyzNy = rzx

23.5 + 0.83 * 16.4 = 37.11

r = 0.83,

Protein Fat

r = 0.83

sy = 16.4 gsx = 14.0 g
y = 23.5 gx = 17.2 g

Why Is Correlation “r ”?
In his original paper on
correlation, Galton used r for
the “index of correlation”
that we now call the
correlation coefficient. He
calculated it from the
regression of y on x or of x on
y after standardizing the
variables, just as we have
done. It’s fairly clear from
the text that he used r to
stand for (standardized)
regression.
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• We know choosing minimizes the sum of the squared residuals, but how small does
that sum get? Equation (4) told us that the mean of the squared residuals is 
When This is the variability not explained by
the regression line. Since the variance in was 1 (Equation 2), the percentage of variability in
y that is explained by x is This important fact will help us assess the strength of our models.

And there’s still another bonus. Because is the percent of variability explained by our
model, is at most 100%. If then proving that correlations are always
between and (Told you so!)+1.-1

-1 … r … 1,r2
… 1,r2

r2

r2.
zy

1 - 2mr + m2
= 1 - 2r2

+ r2
= 1 - r2.m = r,

1 - 2mr + m2.
m = r

Simulation: Interpreting
Equations. This demonstrates
how to use and interpret linear
equations.

4 We changed from to for a reason—not just to be difficult. Eventually
we’ll want to add more x’s to the model to make it more realistic and we don’t want to use
up the entire alphabet. What would we use after m? The next letter is n, and that one’s 
already taken. o? See our point? Sometimes subscripts are the best approach.
5 Several important results popped up in that Math Box. Check it out!

b0 + b1xmx + b

Intercept
b0 = y - b1x

Slope

b1 =

rsy

sx
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A regression model for hurricanes

The Regression Line in Real Units 177

For the Burger King foods, that comes out to

Putting this back into the regression equation gives

What does this mean? The slope, 0.97, says that an additional gram of protein is
associated with an additional 0.97 grams of fat, on average. Less formally, we
might say that Burger King sandwiches pack about 0.97 grams of fat per gram
of protein. Slopes are always expressed in y-units per x-unit. They tell how the
y-variable changes (in its units) for a one-unit change in the x-variable. When you
see a phrase like “students per teacher” or “kilobytes per second” think slope.

Changing the units of the variables doesn’t change the correlation, but for the
slope, units do matter. We may know that age and height in children are positively
correlated, but the value of the slope depends on the units. If children grow an av-
erage of 3 inches per year, that’s the same as 0.21 millimeters per day. For the
slope, it matters whether you express age in days or years and whether you meas-
ure height in inches or millimeters. How you choose to express x and y—what
units you use—affects the slope directly. Why? We know changing units doesn’t
change the correlation, but does change the standard deviations. The slope intro-
duces the units into the equation by multiplying the correlation by the ratio of 
to The units of the slope are always the units of y per unit of x.

How about the intercept of the BK regression line, 6.8? Algebraically, that’s
the value the line takes when x is zero. Here, our model predicts that even a BK
item with no protein would have, on average, about 6.8 grams of fat. Is that rea-
sonable? Well, the apple pie, with 2 grams of protein, has 14 grams of fat, so it’s
not impossible. But often 0 is not a plausible value for x (the year 0, a baby born
weighing 0 grams, ...). Then the intercept serves only as a starting value for our
predictions and we don’t interpret it as a meaningful predicted value.

sx.
sy

fat = 6.8 + 0.97 protein.

b0 = 23.5 g fat - 0.97 
g fat

g protein
* 17.2 g protein = 6.8 g fat.

Units of y per unit of x
Get into the habit of
identifying the units by
writing down “y-units per 
x-unit,” with the unit names
put in place.You’ll find it’ll
really help you to Tell about
the line in context.
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FIGURE 8.4
Burger King menu items in their 
natural units with the regression line.

In Chapter 7 we looked at the relationship between the central pressure and maximum
wind speed of Atlantic hurricanes. We saw that the scatterplot was straight enough, and
then found a correlation of but we had no model to describe how these two
important variables are related or to allow us to predict wind speed from pressure.

fore, we can use technology to find the regression model. It looks like this:

intercept have a meaningful interpretation?

MaxWindSpeed increases. That makes sense from our general un-
derstanding of how hurricanes work: Low central pressure pulls in
moist air, driving the rotation and the resulting destructive winds.
The slope’s value says that, on average, the maximum wind speed in-
creases by about 0.897 knots for every 1-millibar drop in central pressure.

It’s not meaningful, however, to interpret the intercept as the wind speed predicted for a central pressure of 0—that
would be a vacuum. Instead, it is merely a starting value for the model.
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Since the conditions we need to check for regression are the same ones we checked be-

Question: Interpret this model. What does the slope mean in this context? Does the

The negative slope says that as CentralPressure falls,

MaxWindSpeed = 955.27 – 0.897CentralPressure



JUST CHECKING
Let’s look again at the relationship between house Price (in thousands of dollars) and house Size

(in thousands of square feet) in Saratoga. The regression model is

4. What does the slope of 94.454 mean?

5. What are the units of the slope?

6. Your house is 2000 sq ft bigger than your neighbor’s house. How much more do you expect it to be
worth?

7. Is the y-intercept of meaningful? Explain.-3.117

Price = -3.117 + 94.454 Size.

178 CHAPTER 8    Linear Regression

With the estimated linear model, it’s easy to predict fat
content for any menu item we want. For example, for the BK Broiler chicken sand-
wich with 30 grams of protein, we can plug in 30 grams for the amount of protein and
see that the predicted fat content is grams of fat. Because the
BK Broiler chicken sandwich actually has 25 grams of fat, its residual is

To use a regression model, we should check the same conditions for re-
gressions as we did for correlation: the Quantitative Variables Condition, the
Straight Enough Condition, and the Outlier Condition.

fat - fat = 25 - 35.9 = -10.9 g.

6.8 + 0.971302 = 35.9

fat = 6.8 + 0.97 protein,

Calculating a Regression EquationSTEP-BY-STEP EXAMPLE

I want to know how the number of wildfires in the
continental United States has changed in the
past two decades.

I have data giving the number of wildfires for each
year (in thousands of fires) from 1982 to 2005.

Ç Quantitative Variables Condition: Both
the number of fires and the year are
quantitative.

Plan State the problem.

Variables Identify the variables and
report the W’s.

Wildfires are an ongoing source of concern shared by several government
agencies. In 2004, the Bureau of Land Management, Bureau of Indian Affairs,
Fish and Wildlife Service, National Park Service, and USDA Forest Service
spent a combined total of $890,233,000 on fire suppression, down from nearly
twice that much in 2002. These government agencies join together in the 
National Interagency Fire Center, whose Web site (www.nifc.gov) reports sta-
tistics about wildfires.

Question: Has the annual number of wildfires been changing, on average? If
so, how fast and in what way?
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Year:

Fires:

Correlation:

= -3.4556 fires per year

b1 =

rsy

sx
=

-0.862(28.342)
7.07

r = -0.862

 sy = 28.342 fires
 y = 114.098 fires

 sx = 7.07 years
 x = 11.5 (representing 1993.5)

Mechanics Find the equation of the re-
gression line. Summary statistics give the
building blocks of the calculation.

(We generally report summary statistics
to one more digit of accuracy than the
data. We do the same for intercept and
predicted values, but for slopes we usu-
ally report an additional digit. Remember,
though, not to round off until you finish
computing an answer.)6

Find the slope, b1.

Ç Straight Enough Condition: The scatter-
plot shows a strong linear relationship
with a negative association.

Ç Outlier Condition: No outliers are evident
in the scatterplot.

Because these conditions are satisfied, it is OK
to model the relationship with a regression line.

Just as we did for correlation, check the
conditions for a regression by making a
picture. Never fit a regression without
looking at the scatterplot first.

Find the intercept, b0.

So the least squares line is

Fires = 153.837 - 3.4556 year

yN = 153.837 - 3.4556x, or

 = 153.837
 b0 = y - b1x = 114.098 - (-3.4556)11.5

Write the equation of the model, using
meaningful variable names.

6 We warned you in Chapter 6 that we’ll round in the intermediate steps of a calculation 
to show the steps more clearly. If you repeat these calculations yourself on a calculator or
statistics program, you may get somewhat different results. When calculated with more
precision, the intercept is 153,809 and the slope is -3.453.

Note: It’s common (and usually simpler)
not to use four-digit numbers to identify
years. Here we have chosen to number
the years beginning in 1982, so 1982 is
represented as year 0 and 2005 as year 23.
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Residuals Revisited
The linear model we are using assumes that the relationship between the two
variables is a perfect straight line. The residuals are the part of the data that hasn’t
been modeled. We can write

or, equivalently,

Or, in symbols,

When we want to know how well the model fits, we can ask instead what the
model missed. To see that, we look at the residuals.

e = y - yN .

Residual =  Data - Model.

Data = Model + Residual

During the period from 1982 to 2005, the 
annual number of fires declined at an average
rate of about 3,456 (3.456 thousand) fires
per year. For prediction, the model uses a base
estimation of 153,837 fires in 1982.

Conclusion Interpret what you have
found in the context of the question.
Discuss in terms of the variables and 
their units.

Activity: Find a
Regression Equation. Now that
we’ve done it by hand, try it with
technology using the statistics
package paired with your version
of ActivStats.

Katrina’s residualFOR EXAMPLE

Recap: The linear model relating hurricanes’ wind speeds to their central pressures was

Let’s use this model to make predictions and see how those predictions do.

Question: Hurricane Katrina had a central pressure measured at 920 millibars. What does our regres-
sion model predict for her maximum wind speed? How good is that prediction, given that Katrina’s ac-
tual wind speed was measured at 110 knots?

Substituting 920 for the central pressure in the regression model equation
gives

The regression model predicts a maximum wind speed of 130 knots for Hurricane
Katrina.
The residual for this prediction is the observed value minus the predicted value:

In the case of Hurricane Katrina, the model predicts a wind speed 20 knots higher than was actually observed.

110 - 130 = -20kts.

MaxWindSpeed = 955.27 - 0.89719202 = 130.03

Why e for “Residual”?
The flip answer is that r is
already taken, but the truth is
that e stands for  “error.” No,
that doesn’t mean it’s a
mistake. Statisticians often
refer to variability not
explained by a model as error.
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JUST CHECKING
Our linear model for Saratoga homes uses the Size (in thousands of square feet) to estimate the 

Price (in thousands of dollars): Size. Suppose you’re thinking of buying a 
home there.

8. Would you prefer to find a home with a negative or a positive residual? Explain.

9. You plan to look for a home of about 3000 square feet. How much should you expect to have to pay?

10. You find a nice home that size selling for $300,000. What’s the residual?

Price = -3.117 + 94.454

The Residual Standard Deviation 181

Residuals help us to see whether the model makes sense. When a
regression model is appropriate, it should model the underlying rela-
tionship. Nothing interesting should be left behind. So after we fit a re-
gression model, we usually plot the residuals in the hope of finding . . .
nothing.

A scatterplot of the residuals versus the x-values should be the
most boring scatterplot you’ve ever seen. It shouldn’t have any inter-
esting features, like a direction or shape. It should stretch horizontally,
with about the same amount of scatter throughout. It should show no
bends, and it should have no outliers. If you see any of these features,
find out what the regression model missed.

Most computer statistics packages plot the residuals against the
predicted values rather than against x. When the slope is negative,
the two versions are mirror images. When the slope is positive, they’re
virtually identical except for the axis labels. Since all we care about is
the patterns (or, better, lack of patterns) in the plot, it really doesn’t mat-
ter which way we plot the residuals.

yN ,
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FIGURE 8.5
The residuals for the BK menu regression look appropri-
ately boring.

The Residual Standard Deviation
If the residuals show no interesting pattern when we plot them against x, we can
look at how big they are. After all, we’re trying to make them as small as possible.
Since their mean is always zero, though, it’s only sensible to look at how much they
vary. The standard deviation of the residuals, gives us a measure of how much
the points spread around the regression line. Of course, for this summary to make
sense, the residuals should all share the same underlying spread, so we check to
make sure that the residual plot has about the same amount of scatter throughout.

This gives us a new assumption: the Equal Variance Assumption. The associ-
ated condition to check is the Does the Plot Thicken? Condition. We check to
make sure that the spread is about the same all along the line. We can check that
either in the original scatterplot of y against x or in the scatterplot of residuals.

We estimate the standard deviation of the residuals in almost the way you’d
expect:

We don’t need to subtract the mean because the mean of the residuals 
For the Burger King foods, the standard deviation of the residuals is 9.2 grams

of fat. That looks about right in the scatterplot of residuals. The residual for the
BK Broiler chicken was grams, just over one standard deviation.-11

e = 0.

se = A
©e2

n - 2

se,

Why rather than
We used for s

when we estimated the
mean. Now we’re estimating
both a slope and an
intercept. Looks like a
pattern—and it is. We
subtract one more for each
parameter we estimate.

n - 1n - 1?
n - 2
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It’s a good idea to make a histogram of the residuals. If we see a unimodal,
symmetric histogram, then we can apply the 68–95–99.7 Rule to see how well
the regression model describes the data. In particular, we know that 95% of the
residuals should be no larger in size than . The Burger King residuals look
like this:

2se
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5# 
of
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es

id
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ls

–9.2–27.6 –18.4 0.0 9.2 18.4 27.6
Residuals

Sure enough, almost all are less than 2(9.2), or 18.4, g of fat in size.

—The Variation Accounted For
The variation in the residuals is the key to assessing how well the model fits.
Let’s compare the variation of the response variable with the variation of the
residuals. The total Fat has a standard deviation of 16.4 grams. The standard de-
viation of the residuals is 9.2 grams. If the correlation were 1.0 and the model
predicted the Fat values perfectly, the residuals would all be zero and have no
variation. We couldn’t possibly do any better than that.

On the other hand, if the correlation were zero, the model would simply pre-
dict 23.5 grams of Fat (the mean) for all menu items. The residuals from that pre-
diction would just be the observed Fat values minus their mean. These residuals
would have the same variability as the original data because, as we know, just
subtracting the mean doesn’t change the spread.

How well does the BK regression model do? Look at the boxplots. The varia-
tion in the residuals is smaller than in the data, but certainly bigger than zero.
That’s nice to know, but how much of the variation is still left in the residuals? If
you had to put a number between 0% and 100% on the fraction of the variation
left in the residuals, what would you say?

All regression models fall somewhere between the two extremes of zero cor-
relation and perfect correlation. We’d like to gauge where our model falls. As we
showed in the Math Box,7 the squared correlation, , gives the fraction of the
data’s variation accounted for by the model, and is the fraction of the orig-
inal variation left in the residuals. For the Burger King model, 
and is 0.31, so 31% of the variability in total Fat has been left in the residu-
als. How close was that to your guess?

All regression analyses include this statistic, although by tradition, it is writ-
ten with a capital letter, and pronounced “R-squared.” An of 0 means that
none of the variance in the data is in the model; all of it is still in the residuals. It
would be hard to imagine using that model for anything.

R2R2,

1 - r2
r2

= 0.832
= 0.69,

1 - r2
r2

R 
2
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45

Fat Residuals

FIGURE 8.6
Compare the variability of total Fat with
the residuals from the regression. The
means have been subtracted to make it
easier to compare spreads. The varia-
tion left in the residuals is unaccounted
for by the model, but it’s less than the
variation in the original data.

7 Have you looked yet? Please do.

Understanding . Watch the
unexplained variability decrease
as you drag points closer to the
regression line.

R2
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Is a correlation of 0.80 twice
as strong as a correlation of
0.40? Not if you think in
terms of . A correlation 
of 0.80 means an of 

A correlation 
of 0.40 means an of 

—only a quarter
as much of the variability
accounted for. A correlation
of 0.80 gives an four times
as strong as a correlation of
0.40 and accounts for four
times as much of the
variability.

R2

0.402
= 16%

R2
0.802

= 64%.
R2

R2

How Big Should Be? 183R2

Because is a fraction of a whole, it is often given as a percentage.8 For the
Burger King data, is 69%. When interpreting a regression model, you need to Tell
what means. According to our linear model, 69% of the variability in the fat
content of Burger King sandwiches is accounted for by variation in the protein
content.

R2
R2

R2

How can we see that is really the fraction of variance accounted
for by the model? It’s a simple calculation. The variance of the fat content of the
Burger King foods is If we treat the residuals as data, the variance of
the residuals is 83.195.9 As a fraction, that’s or 31%. That’s
the fraction of the variance that is not accounted for by the model. The fraction that is
accounted for is just the value we got for R2.100% - 31% = 69%,

83.195>268.42 = 0.31,
16.42

= 268.42.

R 
2

Interpreting R2FOR EXAMPLE

Recap: Our regression model that predicts maximum wind speed in hurricanes based on the storm’s central pressure has

Question: What does that say about our regression model?

An of 77.3% indicates that 77.3% of the variation in maximum wind speed can be accounted for by
the hurricane’s central pressure. Other factors, such as temperature and whether the storm is over
water or land, may explain some of the remaining variation.

R2

How Big Should Be?
is always between 0% and 100%. But what’s a “good” value? The answer

depends on the kind of data you are analyzing and on what you want to do with
it. Just as with correlation, there is no value for that automatically determinesR2

R2R2

R 
2

JUST CHECKING
Back to our regression of house Price (in thousands of $) on house Size (in thousands of square

feet). The value is reported as 59.5%, and the standard deviation of the residualsis 53.79.

11. What does the value mean about the relationship of Price and Size?

12. Is the correlation of Price and Size positive or negative? How do you know?

13. If we measure house Size in square meters instead, would change? Would the slope of the line
change? Explain.

14. You find that your house in Saratoga is worth $100,000 more than the regression model predicts.
Should you be very surprised (as well as pleased)?

R2

R2

R2

8 By contrast, we usually give correlation coefficients as decimal values between and 1.0.
9 This isn’t quite the same as squaring the that we discussed on the previous page, but
it’s very close. We’ll deal with the distinction in Chapter 27.

se

-1.0
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184 CHAPTER 8    Linear Regression

that the regression is “good.” Data from scientific experiments often have in
the 80% to 90% range and even higher. Data from observational studies and sur-
veys, though, often show relatively weak associations because it’s so difficult to
measure responses reliably. An of 50% to 30% or even lower might be taken as
evidence of a useful regression. The standard deviation of the residuals can give
us more information about the usefulness of the regression by telling us how
much scatter there is around the line.

As we’ve seen, an of 100% is a perfect fit, with no scatter around the line.
The would be zero. All of the variance is accounted for by the model and none
is left in the residuals at all. This sounds great, but it’s too good to be true for real
data.10

Along with the slope and intercept for a regression, you should always report
so that readers can judge for themselves how successful the regression is at

fitting the data. Statistics is about variation, and measures the success of the
regression model in terms of the fraction of the variation of y accounted for by the
regression. is the first part of a regression that many people look at because,
along with the scatterplot, it tells whether the regression model is even worth
thinking about.

Regression Assumptions and Conditions
The linear regression model is perhaps the most widely used model in all of
Statistics. It has everything we could want in a model: two easily estimated pa-
rameters, a meaningful measure of how well the model fits the data, and the abil-
ity to predict new values. It even provides a self-check in plots of the residuals to
help us avoid silly mistakes.

Like all models, though, linear models don’t apply all the time, so we’d better
think about whether they’re reasonable. It makes no sense to make a scatterplot of
categorical variables, and even less to perform a regression on them. Always check
the Quantitative Variables Condition to be sure a regression is appropriate.

The linear model makes several assumptions. First, and foremost, is the
Linearity Assumption—that the relationship between the variables is, in fact, lin-
ear. You can’t verify an assumption, but you can check the associated condition. A
quick look at the scatterplot will help you check the Straight Enough Condition.
You don’t need a perfectly straight plot, but it must be straight enough for the lin-
ear model to make sense. If you try to model a curved relationship with a straight
line, you’ll usually get exactly what you deserve.

If the scatterplot is not straight enough, stop here. You can’t use a linear model
for any two variables, even if they are related. They must have a linear association,
or the model won’t mean a thing.

For the standard deviation of the residuals to summarize the scatter, all the
residuals should share the same spread, so we need the Equal Variance Assump-
tion. The Does the Plot Thicken? Condition checks for changing spread in the
scatterplot.

Check the Outlier Condition. Outlying points can dramatically change a re-
gression model. Outliers can even change the sign of the slope, misleading us
about the underlying relationship between the variables. We’ll see examples in
the next chapter.

Even though we’ve checked the conditions in the scatterplot of the data, a
scatterplot of the residuals can sometimes help us see any violations even more

R2

R2
R2

se

R2

R2

R2

Make a Picture
To use regression, first check
that

• the scatterplot is straight
enough.

After you’ve fit the
regression, make a residual
plot and check that there are
no obvious patterns. In
particular, check that

• there are no obvious
bends,

• the spread of the
residuals is about the
same throughout, and

• there are no obvious
outliers.

10 If you see an of 100%, it’s a good idea to figure out what happened. You may have dis-
covered a new law of Physics, but it’s much more likely that you accidentally regressed
two variables that measure the same thing.

R2

Some Extreme Tales
One major company
developed a method to
differentiate between
proteins.To do so, they had
to distinguish between
regressions with of 99.99%
and 99.98%. For this
application, 99.98% was not
high enough.

The president of a
financial services company
reports that although his
regressions give below 2%,
they are highly successful
because those used by his
competition are even lower.

R2

R2
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A Tale of Two Regressions 185

clearly. And examining the residuals is the best way to look for additional pat-
terns and interesting quirks in the data.

A Tale of Two Regressions
Regression slopes may not behave exactly the way you’d expect at first. Our re-
gression model for the Burger King sandwiches was protein. That
equation allowed us to estimate that a sandwich with 30 grams of protein would
have 35.9 grams of fat. Suppose, though, that we knew the fat content and wanted
to predict the amount of protein. It might seem natural to think that by solving
our equation for protein we’d get a model for predicting protein from fat. But that
doesn’t work.

Our original model is , but the new one needs to evaluate an 
based on a value of y. There’s no y in our original model, only , and that makes
all the difference. Our model doesn’t fit the BK data values perfectly, and the least
squares criterion focuses on the vertical errors the model makes in using to model
y—not on horizontal errors related to x.

A quick look at the equations reveals why. Simply solving our equation for x
would give a new line whose slope is the reciprocal of ours. To model y in terms 
of x, our slope is . To model x in terms of y, we’d need to use the slope

. Notice that it’s not the reciprocal of ours.
If we want to predict protein from fat, we need to create that model. The slope 

is grams of protein per gram of fat. The equation turns out 
to be , so we’d predict that a sandwich with 35.9 grams
of fat should have 26.0 grams of protein—not the 30 grams that we used in the
first equation.

Moral of the story: Think. (Where have you heard that before?) Decide which
variable you want to use (x) to predict values for the other (y). Then find the
model that does that. If, later, you want to make predictions in the other direction,
you’ll need to start over and create the other model from scratch.

protein = 0.55 + 0.709 fat

b1 =

10.832114.02
16.4 = 0.709

b1 =

rs
x

sy

b1 =

rs
y

sx

yN
xNyN = b0 + b1x

fat = 6.8 + 0.97

Protein Fat

r = 0.83

sy = 16.4 gsx = 14.0 g
y = 23.5 gx = 17.2 g

Even if you hit the fast food joints for lunch, you should have a good breakfast. Nutritionists, con-
cerned about “empty calories”in breakfast cereals, recorded facts about 77 cereals, including their
Calories per serving and Sugar content (in grams).

Question: How are calories and sugar content related in breakfast cereals?

RegressionSTEP-BY-STEP EXAMPLE

I am interested in the relationship between
sugar content and calories in cereals. I’ll use
Sugar to estimate Calories.

Ç Quantitative Variables Condition: I have
two quantitative variables, Calories and
Sugar content per serving, measured on 
77 breakfast cereals. The units of meas-
urement are calories and grams of sugar,
respectively.

Plan State the problem and determine
the role of the variables.

Variables Name the variables and
report the W’s.
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186 CHAPTER 8    Linear Regression

Ç Outlier Condition: There are no obvious
outliers or groups.

Ç The Straight Enough Condition is satisfied;
I will fit a regression model to these data.

Ç The Does the Plot Thicken? Condition is
satisfied. The spread around the line looks
about the same throughout.

Check the conditions for a regression by
making a picture. Never fit a regression
without looking at the scatterplot first.

Calories

Sugar

Correlation

So the least squares line is

Squaring the correlation gives

R2
= 0.5642

= 0.318 or 31.8%.

Calories = 89.5 + 2.50 Sugar.
yN = 89.5 + 2.50 x or

 b0 = y - b1x = 107 - 2.50(7) = 89.5 calories.

 = 2.50 calories per gram of sugar.

 b1 =

rsy

sx
=

0.564(19.5)
4.4

 r = 0.564

 sx = 4.4 grams
 x = 7.0 grams

 sy = 19.5 calories
 y = 107.0 calories

Mechanics If there are no clear viola-
tions of the conditions, fit a straight line
model of the form to the
data. Summary statistics give the build-
ing blocks of the calculation.

yN = b0 + b1x

60

90

120

150

4 8 12

C
al
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s

Sugar (g)

Find the slope.

Find the intercept.

Write the equation, using meaningful
variable names.

State the value of .R2

The scatterplot shows a positive, linear rela-
tionship and no outliers. The slope of the least
squares regression line suggests that cereals
have about 2.50 Calories more per additional
gram of Sugar.

Conclusion Describe what the model
says in words and numbers. Be sure to use
the names of the variables and their units.

The key to interpreting a regression model
is to start with the phrase “ y-units per
x-unit,” substituting the estimated value
of the slope for and the names of theb1

b1
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The says that 31.8% of the variability in
Calories is accounted for by variation in Sugar
content.

calories. That’s smaller than the
original SD of 19.5, but still fairly large.
se = 16.2

R2gives the fraction of the variability of y
accounted for by the linear regression
model.

Find the standard deviation of the residu-
als, , and compare it to the original sy.se

R2

The residuals show a horizontal direction, a
shapeless form, and roughly equal scatter for
all predicted values. The linear model appears
to be appropriate.

Check Again Even though we looked at
the scatterplot before fitting a regression
model, a plot of the residuals is essential
to any regression analysis because it is the
best check for additional patterns and in-
teresting quirks in the data.
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TI Tips Regression lines and residuals plots

By now you will not be surprised to learn that your calculator can do it all: scat-
terplot, regression line, and residuals plot. Let’s try it using the Arizona State
tuition data from the last chapter. (TI Tips, p. 149) You should still have that
saved in lists named and . First, recreate the scatterplot.

1. Find the equation of the regression line.
Actually, you already found the line when you used the calculator to get the
correlation. But this time we’ll be a little fancier so that we can display the line
on our scatterplot. We want to tell the calculator to do the regression and save
the equation of the model as a graphing variable.

• Under choose .
• Specify that x and y are and , as before, but . . .
• Now add a comma and one more specification. Press , go to the 

menu, choose , and finally(!) choose .
• Hit .

There’s the equation. The calculator tells you that the regression line is
year. Can you explain what the slope and y-intercept mean?

2. Add the line to the plot.
When you entered this command, the calculator automatically saved the equa-
tion as . Just hit to see the line drawn across your scatterplot.

tuit = 6440 + 326

respective units. The intercept is then a
starting or base value.

The intercept predicts that sugar-free cereals
would average about 89.5 calories.

AGAIN

Residuals plots. See how the
residuals plot changes as you drag
points around in a scatterplot.
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Reality Check: Is the Regression Reasonable?
Statistics don’t come out of nowhere. They are based on data. The results of a statis-
tical analysis should reinforce your common sense, not fly in its face. If the results
are surprising, then either you’ve learned something new about the world or your
analysis is wrong.

Whenever you perform a regression, think about the coefficients and ask
whether they make sense. Is a slope of 2.5 calories per gram of sugar reasonable?
That’s hard to say right off. We know from the summary statistics that a typical
cereal has about 100 calories and 7 grams of sugar. A gram of sugar contributes
some calories (actually, 4, but you don’t need to know that), so calories should go
up with increasing sugar. The direction of the slope seems right.

To see if the size of the slope is reasonable, a useful trick is to consider its order
of magnitude. We’ll start by asking if deflating the slope by a factor of 10 seems
reasonable. Is 0.25 calories per gram of sugar enough? The 7 grams of sugar found
in the average cereal would contribute less than 2 calories. That seems too small.

Now let’s try inflating the slope by a factor of 10. Is 25 calories per gram rea-
sonable? Then the average cereal would have 175 calories from sugar alone. The
average cereal has only 100 calories per serving, though, so that slope seems too big.

We have tried inflating the slope by a factor of 10 and deflating it by 10 and
found both to be unreasonable. So, like Goldilocks, we’re left with the value in the
middle that’s just right. And an increase of 2.5 calories per gram of sugar is cer-
tainly plausible.

The small effort of asking yourself whether the regression equation is plausi-
ble is repaid whenever you catch errors or avoid saying something silly or absurd
about the data. It’s too easy to take something that comes out of a computer at
face value and assume that it makes sense.

Always be skeptical and ask yourself if the answer is reasonable.

3. Check the residuals.
Remember, you are not finished until you check to see if a linear model is ap-
propriate. That means you need to see if the residuals appear to be randomly
distributed. To do that, you need to look at the residuals plot.

This is made easy by the fact that the calculator has already placed the residu-
als in a list named . Want to see them? Go to and look
through the lists. (If is not already there, go to the first blank list and
import the name from your menu. The residuals should
appear.) Every time you have the calculator compute a regression analysis, it
will automatically save this list of residuals for you.

4. Now create the residuals plot.

• Set up as a scatterplot with and 
.

• Before you try to see the plot, go to the screen. By moving the cursor
around and hitting in the appropriate places you can turn off the re-
gression line and , and turn on .

• will now graph the residuals plot.

Uh-oh! See the curve? The residuals are high at both ends, low in the middle.
Looks like a linear model may not be appropriate after all. Notice that the residu-
als plot makes the curvature much clearer than the original scatterplot did.

Moral: Always check the residuals plot!

So a linear model might not be appropriate here. What now? The next two
chapters provide techniques for dealing with data like these.

Adjective, Noun, or Verb
You may see the term
regression used in different
ways.There are many ways
to fit a line to data, but the
term  “regression line” or
“regression” without any
other qualifiers always means
least squares. People also use
regression as a verb when
they speak of regressing a 
y-variable on an x-variable to
mean fitting a linear model.

BOCK_C08_0321570448 pp3.qxd  11/21/08  5:01 PM  Page 188
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WHAT CAN GO WRONG?
There are many ways in which data that appear at first to be good candidates for regres-
sion analysis may be unsuitable. And there are ways that people use regression that can
lead them astray. Here’s an overview of the most common problems. We’ll discuss them
at length in the next chapter.

u Don’t fit a straight line to a nonlinear relationship. Linear regression is suited only to rela-
tionships that are, well, linear. Fortunately, we can often improve the linearity easily
by using re-expression. We’ll come back to that topic in Chapter 10.

u Beware of extraordinary points. Data points can be extraordinary in a regression in two
ways: They can have y-values that stand off from the linear pattern suggested by
the bulk of the data, or extreme x-values. Both kinds of extraordinary points require
attention.

u Don’t extrapolate beyond the data. A linear model will often do a reasonable job of sum-
marizing a relationship in the narrow range of observed x-values. Once we have a
working model for the relationship, it’s tempting to use it. But beware of predicting
y-values for x-values that lie outside the range of the original data. The model may
no longer hold there, so such extrapolations too far from the data are dangerous.

u Don’t infer that x causes y just because there is a good linear model for their relationship.
When two variables are strongly correlated, it is often tempting to assume a causal
relationship between them. Putting a regression line on a scatterplot tempts us even
further, but it doesn’t make the assumption of causation any more valid. For exam-
ple, our regression model predicting hurricane wind speeds from the central pres-
sure was reasonably successful, but the relationship is very complex. It is reasonable
to say that low central pressure at the eye is responsible for the high winds because
it draws moist, warm air into the center of the storm, where it swirls around, gener-
ating the winds. But as is often the case, things aren’t quite that simple. The winds
themselves also contribute to lowering the pressure at the center of the storm as it
becomes a hurricane. Understanding causation requires far more work than just
finding a correlation or modeling a relationship.

u Don’t choose a model based on alone. Although measures the strength of the linear
association, a high does not demonstrate the appropriateness of the regression. A
single outlier, or data that separate into two groups rather than a single cloud of
points, can make seem quite large when, in fact, the linear regression model is
simply inappropriate. Conversely, a low value may be due to a single outlier as
well. It may be that most of the data fall roughly along a straight line, with the ex-
ception of a single point. Always look at the scatterplot.

R2
R2

R2
R2R 2

CONNECTIONS
We’ve talked about the importance of models before, but have seen only the Normal model as an
example. The linear model is one of the most important models in Statistics. Chapter 7 talked about
the assignment of variables to the y- and x-axes. That didn’t matter to correlation, but it does matter
to regression because y is predicted by x in the regression model.

The connection of to correlation is obvious, although it may not be immediately clear that just
by squaring the correlation we can learn the fraction of the variability of y accounted for by a re-
gression on x. We’ll return to this in subsequent chapters.

We made a big fuss about knowing the units of your quantitative variables. We didn’t need units
for correlation, but without the units we can’t define the slope of a regression. A regression makes
no sense if you don’t know the Who, the What, and the Units of both your variables.

We’ve summed squared deviations before when we computed the standard deviation and vari-
ance. That’s not coincidental. They are closely connected to regression.

When we first talked about models, we noted that deviations away from a model were often in-
teresting. Now we have a formal definition of these deviations as residuals.

R2

does not mean that
protein accounts for 69% of
the fat in a BK food item. It is
the variation in fat content
that is accounted for by the
linear model.

R2
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190 CHAPTER 8    Linear Regression

WHAT HAVE WE LEARNED?

We’ve learned that when the relationship between quantitative variables is fairly straight, a linear
model can help summarize that relationship and give us insights about it:

u The regression (best fit) line doesn’t pass through all the points, but it is the best compromise in
the sense that the sum of squares of the residuals is the smallest possible.

We’ve learned several things the correlation, r, tells us about the regression:

u The slope of the line is based on the correlation, adjusted for the units of x and y:

We’ve learned to interpret that slope in context:

u For each SD of x that we are away from the x mean, we expect to be r SDs of y away from the 
y mean.

u Because r is always between each predicted y is fewer SDs away from its mean
than the corresponding x was, a phenomenon called regression to the mean.

u The square of the correlation coefficient, , gives us the fraction of the variation of the re-
sponse accounted for by the regression model. The remaining of the variation is left in
the residuals.

The residuals also reveal how well the model works:

u If a plot of residuals against predicted values shows a pattern, we should re-examine the data to
see why.

u The standard deviation of the residuals, quantifies the amount of scatter around the line.

Of course, the linear model makes no sense unless the Linearity Assumption is satisfied. We check
the Straight Enough Condition and Outlier Condition with a scatterplot, as we did for correlation,
and also with a plot of residuals against either the x or the predicted values. For the standard devia-
tion of the residuals to make sense as a summary, we have to make the Equal Variance Assumption.
We check it by looking at both the original scatterplot and the residual plot for the Does the Plot
Thicken? Condition.

Terms
Model 172. An equation or formula that simplifies and represents reality.

Linear model 172. A linear model is an equation of a line. To interpret a linear model, we need to know the vari-
ables (along with their W’s) and their units.

Predicted value 172. The value of found for a given x-value in the data. A predicted value is found by substituting
the x-value in the regression equation. The predicted values are the values on the fitted line; the
points all lie exactly on the fitted line.

Residuals 172. Residuals are the differences between data values and the corresponding values predicted by
the regression model—or, more generally, values predicted by any model.

1x, yN2

yN

se,

1 - R2
R2

-1 and +1,

b1 =

rsy

sx

Residual = observed value - predicted value = e = y - yN

Least squares 172. The least squares criterion specifies the unique line that minimizes the variance of the residu-
als or, equivalently, the sum of the squared residuals.

Regression to the mean 174. Because the correlation is always less than 1.0 in magnitude, each predicted tends to be
fewer standard deviations from its mean than its corresponding x was from its mean. This is called
regression to the mean.

Regression line 174. The particular linear equation

Line of best fit

that satisfies the least squares criterion is called the least squares regression line. Casually, we often
just call it the regression line, or the line of best fit.

yN = b0 + b1x

yN
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What Have We Learned? 191

Slope 176. The slope, gives a value in “y-units per x-unit.” Changes of one unit in x are associated
with changes of units in predicted values of y. The slope can be found by

Intercept 176. The intercept, gives a starting value in y-units. It’s the -value when x is 0. You can find it
from 

se 181. The standard deviation of the residuals is found by . When the assumptions and 

conditions are met, the residuals can be well described by using this standard deviation and the
68–95–99.7 Rule.

u 182. is the square of the correlation between y and x.
u gives the fraction of the variability of y accounted for by the least squares linear regression

on x.
u is an overall measure of how successful the regression is in linearly relating y to x.

Skills
u Be able to identify response (y) and explanatory (x) variables in context.

u Understand how a linear equation summarizes the relationship between two variables.

u Recognize when a regression should be used to summarize a linear relationship between two
quantitative variables.

u Be able to judge whether the slope of a regression makes sense.

u Know how to examine your data for violations of the Straight Enough Condition that would make
it inappropriate to compute a regression.

u Understand that the least squares slope is easily affected by extreme values.

u Know that residuals are the differences between the data values and the corresponding values
predicted by the line and that the least squares criterion finds the line that minimizes the sum
of the squared residuals.

u Know how to use a plot of residuals against predicted values to check the Straight Enough Con-
dition, the Does the Plot Thicken? Condition, and the Outlier Condition.

u Understand that the standard deviation of the residuals, , measures variability around the line.
A large means the points are widely scattered; a small means they lie close to the line.sese

se

R2

R2
R2R 2

se = A ©e2

n - 2

b0 = y - b1x.
yNb0,

b1 =

rsy

sx
.

b1

b1,

u Know how to find a regression equation from the summary statistics for each variable and the
correlation between the variables.

u Know how to find a regression equation using your statistics software and how to find the slope
and intercept values in the regression output table.

u Know how to use regression to predict a value of y for a given x.

u Know how to compute the residual for each data value and how to display the residuals.

u Be able to write a sentence explaining what a linear equation says about the relationship be-
tween y and x, basing it on the fact that the slope is given in y-units per x-unit.

u Understand how the correlation coefficient and the regression slope are related. Know how 
describes how much of the variation in y is accounted for by its linear relationship with x.

u Be able to describe a prediction made from a regression equation, relating the predicted value to
the specified x-value.

u Be able to write a sentence interpreting as representing typical errors in predictions—the
amounts by which actual y-values differ from the ’s estimated by the model.yN

se

R2
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192 CHAPTER 8    Linear Regression

REGRESSION ON THE COMPUTER

All statistics packages make a table of results for a regression. These tables may differ slightly from one
package to another, but all are essentially the same—and all include much more than we need to know for now.
Every computer regression table includes a section that looks something like this:

The slope and intercept coefficient are given in a table such as this one. Usually the slope is labeled with the
name of the x-variable, and the intercept is labeled “Intercept” or “Constant.” So the regression equation shown
here is

It is not unusual for statistics packages to give many more digits of the estimated slope and intercept than
could possibly be estimated from the data. (The original data were reported to the nearest gram.) Ordinarily, you
should round most of the reported numbers to one digit more than the precision of the data, and the slope to
two. We will learn about the other numbers in the regression table later in the book. For now, all you need to be
able to do is find the coefficients, the , and the value.R2se

Fat = 6.83077 + 0.97138Protein.

Dependent variable is: Total Fat
R squared = 69.0% 
s = 9.277

Variable
Intercept
Protein

Coefficient
6.83077
0.971381

SE(Coeff)
2.664
0.1209

t-ratio
2.56
8.04

P-value
 0.0158
#0.0001

Standard 
dev of 
residuals
(   )

The “independent,” predictor, or 
  -variablex

se

R squared

The slope

The intercept
We'll deal with all of
these later in the book.
You may ignore them 
for now.

y
The “dependent,” response, or
   -variable

Finding Least Squares
Lines. We almost always use
technology to find regressions.
Practice now—just in time for
the exercises.

EXERCISES

1. Cereals. For many people, breakfast cereal is an impor-
tant source of fiber in their diets. Cereals also contain
potassium, a mineral shown to be associated with main-
taining a healthy blood pressure. An analysis of the
amount of fiber (in grams) and the potassium content (in
milligrams) in servings of 77 breakfast cereals produced
the regression model . If your
cereal provides 9 grams of fiber per serving, how much
potassium does the model estimate you will get?

2. Horsepower. In Chapter 7’s Exercise 33 we examined
the relationship between the fuel economy (mpg) and
horsepower for 15 models of cars. Further analysis pro-
duces the regression model . If
the car you are thinking of buying has a 200-horsepower
engine, what does this model suggest your gas mileage
would be?

mpg = 46.87 - 0.084HP

Potassium = 38 + 27Fiber

3. More cereal. Exercise 1 describes a regression model
that estimates a cereal’s potassium content from the
amount of fiber it contains. In this context, what does it
mean to say that a cereal has a negative residual?

4. Horsepower, again. Exercise 2 describes a regression
model that uses a car’s horsepower to estimate its fuel
economy. In this context, what does it mean to say that a
certain car has a positive residual?

5. Another bowl. In Exercise 1, the regression model 
relates fiber (in grams) and

potassium content (in milligrams) in servings of breakfast
cereals. Explain what the slope means.

6. More horsepower. In Exercise 2, the regression model
relates cars’ horsepower to their

fuel economy (in mpg). Explain what the slope means.
mpg = 46.87 - 0.084HP

Potassium = 38 + 27Fiber
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