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CHAPTER

10
Re-expressing Data:
Get It Straight!

How fast can you go on a bicycle? If you measure your speed, you
probably do it in miles per hour or kilometers per hour. In a 12-mile-
long time trial in the 2005 Tour de France, Dave Zabriskie averaged
nearly 35 mph (54.7 kph), beating Lance Armstrong by 2 seconds.

You probably realize that’s a tough act to follow. It’s fast. You can tell that at 
a glance because you have no trouble thinking in terms of distance covered 
per time.

OK, then, if you averaged 12.5 mph (20.1 kph) for a mile run, would that be fast?
Would it be fast for a 100-m dash? Even if you run the mile often, you probably
have to stop and calculate. Running a mile in under 5 minutes (12 mph) is fast. A
mile at 16 mph would be a world record (that’s a 3-minute, 45-second mile). There’s
no single natural way to measure speed. Sometimes we use time over distance;
other times we use the reciprocal, distance over time. Neither one is correct. We’re
just used to thinking that way in each case.

So, how does this insight help us understand data? All quantitative data come
to us measured in some way, with units specified. But maybe those units aren’t
the best choice. It’s not that meters are better (or worse) than fathoms or leagues.
What we’re talking about is re-expressing the data another way by applying a
function, such as a square root, log, or reciprocal. You already use some of them,
even though you may not know it. For example, the Richter scale of earthquake
strength (logs), the decibel scale for sound intensity (logs), the f/stop scale for
camera aperture openings (squares), and the gauges of shotguns (square roots) all
include simple functions of this sort.

Why bother? As with speeds, some expressions of the data may be easier to
think about. And some may be much easier to analyze with statistical methods.
We’ve seen that symmetric distributions are easier to summarize and straight
scatterplots are easier to model with regressions. We often look to re-express our
data if doing so makes them more suitable for our methods.

Straight to the Point
We know from common sense and from physics that heavier cars need more
fuel, but exactly how does a car’s weight affect its fuel efficiency? Here are the

Activity: Re-expressing
Data. Should you re-express
data? Actually, you already do.

Scan through any Physics
book. Most equations have
powers, reciprocals, or logs.
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FIGURE 10.1
Fuel Efficiency (mpg) vs. Weight for
38 cars as reported by Consumer 
Reports. The scatterplot shows a nega-
tive direction, roughly linear shape,
and strong relationship. However, the
residuals from a regression of Fuel Effi-
ciency on Weight reveal a bent shape
when plotted against the predicted val-
ues. Looking back at the original scat-
terplot, you may be able to see the
bend.

scatterplot of Weight (in pounds) and Fuel Efficiency (in miles per gallon) for 38
cars, and the residuals plot:

Hmm . . . . Even though is 81.6%, the residuals don’t show the random scatter
we were hoping for. The shape is clearly bent. Looking back at the first scatterplot,
you can probably see the slight bending. Think about the regression line through the
points. How heavy would a car have to be to have a predicted gas mileage of 0? It
looks like the Fuel Efficiency would go negative at about 6000 pounds. A Hummer H2
weighs about 6400 pounds. The H2 is hardly known for fuel efficiency, but it does get
more than the minus 5 mpg this regression predicts. Extrapolation is always danger-
ous, but it’s more dangerous the more the model is wrong, because wrong models
tend to do even worse the farther you get from the middle of the data.

The bend in the relationship between Fuel Efficiency and Weight is the kind of
failure to satisfy the conditions for an analysis that we can repair by re-expressing
the data. Instead of looking at miles per gallon, we could take the reciprocal and
work with gallons per hundred miles.1

R2

1 Multiplying by 100 to get gallons per 100 miles simply makes the numbers easier to think
about: You might have a good idea of how many gallons your car needs to drive 100 miles,
but probably a much poorer sense of how much gas you need to go just 1 mile.

“Gallons per hundred miles—what an absurd way to measure fuel effi-
ciency! Who would ever do it that way?” Not all re-expressions are easy to
understand, but in this case the answer is “Everyone except U.S. drivers.” Most of the
world measures fuel efficiency in liters per 100 kilometers (L /100 km). This is the
same reciprocal form (fuel amount per distance driven) and differs from gallons per
100 miles only by a constant multiple of about 2.38. It has been suggested that most
of the world says, “I’ve got to go 100 km; how much gas do I need?” But Americans
say, “I’ve got 10 gallons in the tank. How far can I drive?” In much the same way, re-
expressions “think” about the data differently but don’t change what they mean.
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FIGURE 10.3
The reciprocal (1/y) is measured in
gallons per mile. Gallons per 100
miles gives more meaningful numbers.
The reciprocal is more nearly linear
against Weight than the original vari-
able, but the re-expression changes
the direction of the relationship. The
residuals from the regression of Fuel
Consumption (gal/100 mi) on Weight
show less of a pattern than before.
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FIGURE 10.2
Extrapolating the regression line gives
an absurd answer for vehicles that
weigh as little as 6000 pounds.
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WHO 77 large companies

WHAT Assets, sales, and
market sector

UNITS $100,000

HOW Public records

WHEN 1986

WHY By Forbes magazine 
in reporting on the
Forbes 500 for that 
year
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The direction of the association is positive now, since we’re measuring gas
consumption and heavier cars consume more gas per mile. The relationship is
much straighter, as we can see from a scatterplot of the regression residuals.

This is more the kind of boring residuals plot (no direction, no particular
shape, no outliers, no bends) that we hope to see, so we have reason to think that
the Straight Enough Condition is now satisfied. Now here’s the payoff: What does
the reciprocal model say about the Hummer? The regression line fit to Fuel Con-
sumption vs. Weight predicts somewhere near 9.7 for a car weighing 6400 pounds.
What does this mean? It means the car is predicted to use 9.7 gallons for every 100
miles, or in other words,

That’s a much more reasonable prediction and very close to the reported
value of 11.0 miles per gallon (of course, your mileage may vary . . . ).

Goals of Re-expression
We re-express data for several reasons. Each of these goals helps make the data
more suitable for analysis by our methods.

Goal 1
Make the distribution of a variable (as seen in its histogram, for example) more
symmetric. It’s easier to summarize the center of a symmetric distribution, and
for nearly symmetric distributions, we can use the mean and standard deviation.
If the distribution is unimodal, then the resulting distribution may be closer to the
Normal model, allowing us to use the Rule.

Here are a histogram, quite skewed, showing the Assets of 77 companies se-
lected from the Forbes 500 list (in $100,000) and the more symmetric histogram af-
ter taking logs.

68-95-99.7

100 miles

9.7 gallons
= 10.3 mpg.

FIGURE 10.4
The distribution of the Assets of large companies is skewed to the right. Data on wealth often look like this.
Taking logs makes the distribution more nearly symmetric.
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Goal 2
Make the spread of several groups (as seen in side-by-side boxplots) more alike,
even if their centers differ. Groups that share a common spread are easier to com-
pare. We’ll see methods later in the book that can be applied only to groups with

Simulation: Re-expression
in Action. Slide the re-expression
power and watch the histogram
change.
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a common standard deviation. We saw an example of re-expression for compar-
ing groups with boxplots in Chapter 5.

Here are the Assets of these companies by Market Sector:
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FIGURE 10.5
Assets of large companies by Market
Sector. It’s hard to compare centers or
spreads, and there seem to be a num-
ber of high outliers.

Taking logs makes the individual boxplots more symmetric and gives them
spreads that are more nearly equal.

3.75

4.50

Energy Finance HiTech Mfg Medical OtherRetail Trnsp

Market Sector

Lo
g 

As
se

ts

3.00

FIGURE 10.6
After re-expressing by logs, it’s much
easier to compare across market sec-
tors. The boxplots are more nearly
symmetric, most have similar spreads,
and the companies that seemed to be
outliers before are no longer extraordi-
nary. Two new outliers have appeared
in the finance sector. They are the only
companies in that sector that are not
banks. Perhaps they don’t belong
there.

Doing this makes it easier to compare assets across market sectors. It can also re-
veal problems in the data. Some companies that looked like outliers on the high end
turned out to be more typical. But two companies in the finance sector now stick out.
Unlike the rest of the companies in that sector, they are not banks. They may have
been placed in the wrong sector, but we couldn’t see that in the original data.

Goal 3
Make the form of a scatterplot more nearly linear. Linear scatterplots are easier to
model. We saw an example of scatterplot straightening in Chapter 7. The greater
value of re-expression to straighten a relationship is that we can fit a linear model
once the relationship is straight.

Here are Assets of the companies plotted against the logarithm of Sales,
clearly bent. Taking logs makes things much more linear.
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FIGURE 10.7
Assets vs. log Sales shows a positive
association (bigger sales go with bigger
assets) but a bent shape. Note also
that the points go from tightly bunched
at the left to widely scattered at the
right; the plot “thickens.” In the sec-
ond plot, log Assets vs. log Sales shows
a clean, positive, linear association.
And the variability at each value of x is
about the same.
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Goal 4
Make the scatter in a scatterplot spread out evenly rather than thickening at one
end. Having an even scatter is a condition of many methods of Statistics, as we’ll
see in later chapters. This goal is closely related to Goal 2, but it often comes along
with Goal 3. Indeed, a glance back at the scatterplot (Figure 10.7) shows that the
plot for Assets is much more spread out on the right than on the left, while the plot
for log Assets has roughly the same variation in log Assets for any x-value.

Recognizing when a re-expression can helpFOR EXAMPLE

In Chapter 9, we saw the awesome ability of 
emperor penguins to slow their heart rates while
diving. Here are three displays relating to the 
diving heart rates:

(The boxplots show the diving heart rates for
each of the 9 penguins whose dives were
tracked. The names are those given by the 
researchers; )

Question: What features of each of these 
displays suggest that a re-expression might be
helpful?

EP = emperor penguin.
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The scatterplot shows a curved relationship, concave upward, between the duration of the dives and penguins’ heart
rates. Re-expressing either variable may help to straighten the pattern.
The histogram of heart rates is skewed to the high end. Re-expression often helps to make skewed distributions more
nearly symmetric.
The boxplots each show skewness to the high end as well. The medians are low in the boxes, and several show high 
outliers.

The Ladder of Powers
How can we pick a re-expression to use? Some kinds of data favor certain re-
expressions. But even starting from a suggested one, it’s always a good idea to
look around a bit. Fortunately, the re-expressions line up in order, so it’s easy to
slide up and down to find the best one. The trick is to choose our re-expressions
from a simple family that includes the most common ways to re-express data.
More important, the members of the family line up in order, so that the farther
you move away from the original data (the “1” position), the greater is the effect
on the data. This fact lets you search systematically for a re-expression that

Activity: Re-expression in
Action Here’s the animated
version of the Ladder of Powers.
Slide the power and watch the
change.

BOCK_C10_0321570448 pp3.qxd  12/1/08  7:28 PM  Page 226
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works, stepping a bit farther from “1” or taking a step back toward “1” as you
see the results.

Where to start? It turns out that certain kinds of data are more likely to 
be helped by particular re-expressions. Knowing that gives you a good place to
start your search for a re-expression. We call this collection of re-expressions the
Ladder of Powers.

Power Name Comment

2 The square of the data values, y 2. Try this for unimodal distributions that are skewed to the left.
1 The raw data—no change at all. This is 

“home base.” The farther you step from here 
up or down the ladder, the greater the effect.

Data that can take on both positive and negative values 
with no bounds are less likely to benefit from re-expression.

1/2 The square root of the data values, 1y. Counts often benefit from a square root re-expression. For
counted data, start here.

“0” Although mathematicians define the “0-th” 
power differently,2 for us the place is held by 
the logarithm. You may feel uneasy about 
logarithms. Don’t worry; the computer or 
calculator does the work.3

Measurements that cannot be negative, and especially val-
ues that grow by percentage increases such as salaries or
populations, often benefit from a log re-expression. When in
doubt, start here. If your data have zeros, try adding a small
constant to all values before finding the logs.

-1/2 The (negative) reciprocal square root, -1>1y. An uncommon re-expression, but sometimes useful. 
Changing the sign to take the negative of the reciprocal 
square root preserves the direction of relationships, making
things a bit simpler.

-1 The (negative) reciprocal, -1>y. Ratios of two quantities (miles per hour, for example) often
benefit from a reciprocal. (You have about a 50–50 chance 
that the original ratio was taken in the “wrong” order for
simple statistical analysis and would benefit from re-
expression.) Often, the reciprocal will have simple units
(hours per mile). Change the sign if you want to preserve 
the direction of relationships. If your data have zeros, try
adding a small constant to all values before finding the
reciprocal.

2 You may remember that for any nonzero number This is not a very exciting
transformation for data; every data value would be the same. We use the logarithm in 
its place.
3 Your calculator or software package probably gives you a choice between “base 10” loga-
rithms and “natural (base e)” logarithms. Don’t worry about that. It doesn’t matter at all
which you use; they have exactly the same effect on the data. If you want to choose, base
10 logarithms can be a bit easier to interpret.

y, y0
= 1.

JUST CHECKING
1. You want to model the relationship between the number of birds counted at a nesting site and the

temperature (in degrees Celsius). The scatterplot of counts vs. temperature shows an upwardly
curving pattern, with more birds spotted at higher temperatures. What transformation (if any) of
the bird counts might you start with?

2. You want to model the relationship between prices for various items in Paris and in Hong Kong. The
scatterplot of Hong Kong prices vs. Parisian prices shows a generally straight pattern with a small
amount of scatter. What transformation (if any) of the Hong Kong prices might you start with?

3. You want to model the population growth of the United States over the past 200 years. The scatter-
plot shows a strongly upwardly curved pattern. What transformation (if any) of the population
might you start with?

Re-expression. See a curved 
relationship become straighter with
each step on the Ladder of Powers.

BOCK_C10_0321570448 pp3.qxd  12/1/08  7:28 PM  Page 227



228 CHAPTER 10    Re-expressing Data: Get It Straight!

The Ladder of Powers orders the effects that the re-expressions have on data. If
you try, say, taking the square roots of all the values in a variable and it helps, but not
enough, then move farther down the ladder to the logarithm or reciprocal root. Those
re-expressions will have a similar, but even stronger, effect on your data. If you go too
far, you can always back up. But don’t forget—when you take a negative power, the
direction of the relationship will change. That’s OK. You can always change the sign
of the response variable if you want to keep the same direction. With modern tech-
nology, finding a suitable re-expression is no harder than the push of a button.

Scientific laws often include
simple re-expressions. For
example, in Psychology,
Fechner’s Law states that
sensation increases as the
logarithm of stimulus
intensity (S = k log R) .

FOR EXAMPLE

Recap: We’ve seen curvature in the
relationship between emperor penguins’ diving
heart rates and the duration of the dive. Let’s
start the process of finding a good re-expression.
Heart rate is in beats per minute; maybe heart
“speed” in minutes per beat would be a better
choice. Here are the corresponding displays for
this reciprocal re-expression (as we often do,
we’ve changed the sign to preserve the order of
the data values):

Question: Were the re-expressions successful?

–0.0150

–0.0225

–0.0300

–0.0375– 1
/D

H
R

 (m
in

/b
ea

t)

4 8 1612
Dive Duration (min)

25

20

15

10

5# 
of

 D
ive

s 
(m

in
/b

ea
t)

–0.044 –0.024 –0.004
–1/DHR (min/beat)

Trying a re-expression
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The scatterplot bends less than before, but now may be slightly concave downward. The histogram is now slightly skewed
to the low end. Most of the boxplots have no outliers. These boxplots seem better than the ones for the raw heart rates.
Overall, it looks like I may have moved a bit “too far” on the ladder of powers. Halfway between “1” (the original data)
and “ ” (the reciprocal) is “0”, which represents the logarithm. I’d try that for comparison.- 1

Standard (monofilament) fishing line comes in a range of strengths, usually expressed as “test
pounds.” Five-pound test line, for example, can be expected to withstand a pull of up to five
pounds without breaking. The convention in selling fishing line is that the price of a spool doesn’t
vary with strength. Instead, the length of line on the spool varies. Higher test pound line is thicker,
though, so spools of fishing line hold about the same amount of material. Some spools hold line
that is thinner and longer, some fatter and shorter. Let’s look at the Length and Strength of spools of
monofilament line manufactured by the same company and sold for the same price at one store.

Re-expressing to Straighten a ScatterplotSTEP-BY-STEP EXAMPLE
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I want to fit a linear model for the length and
strength of monofilament fishing line.

I have the length and “pound test” strength of
monofilament fishing line sold by a single ven-
dor at a particular store. Each case is a
different strength of line, but all spools of line
sell for the same price.

Let Length length (in yards) of fishing line on
the spool

Strength the test strength (in pounds).=

=

Plan State the problem.

Variables Identify the variables and 
report the W’s.

Plot Check that even if there is a curve,
the overall pattern does not reach a mini-
mum or maximum and then turn around
and go back. An up-and-down curve
can’t be fixed by re-expression.

The plot shows a negative direction and an as-
sociation that has little scatter but is not
straight.
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Here’s a plot of the square root of Length
against Strength:

Mechanics Try a re-expression.

The lesson of the Ladder of Powers is that
if we’re moving in the right direction but
have not had sufficient effect, we should
go farther along the ladder. This example
shows improvement, but is still not
straight.

(Because Length is an amount of some-
thing and cannot be negative, we
probably should have started with logs.
This plot is here in part to illustrate how
the Ladder of Powers works.) Strength 
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The plot is less bent, but still not straight.

Questions: How are the Length on the spool and the Strength related? And what re-expression
will straighten the relationship?
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The scatterplot of the logarithm of Length
against Strength is even less bent:

Stepping from the power to the “0”
power, we try the logarithm of Length
against Strength.
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Maybe now I moved too far along the ladder.

A half-step back is the power: the recipro-
cal square root.

- 1/2

This is much better, but still not straight, so 
I’ll take another step to the “ ” power, or
reciprocal.

- 1
The straightness is improving, so we
know we’re moving in the right direction.
But since the plot of the logarithms is not
yet straight, we know we haven’t gone
far enough. To keep the direction consis-
tent, change the sign and re-express to
-1/Length .

Strength
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We may have to choose between two ad-
jacent re-expressions. For most data
analyses, it really doesn’t matter which
we choose.

Strength
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It’s hard to choose between the last two alter-
natives. Either of the last two choices is good
enough. I’ll choose the power.- 1>2

Conclusion Specify your choice of 
re-expression. If there’s some natural in-
terpretation (as for gallons per 100 miles),
give that.
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Now that the re-expressed data satisfy the Straight Enough Condition, we can fit a linear model by least
squares. We find that

We can use this model to predict the length of a spool of, say, 35-pound test line:

We could leave the result in these units . Sometimes the new units may be as meaningful as
the original, but here we want to transform the predicted value back into yards. Fortunately, each of the re-
expressions in the Ladder of Powers can be reversed.

To reverse the process, we first take the reciprocal: Then squaring gets
us back to the original units:

This may be the most painful part of the re-expression. Getting back to the original units can sometimes be
a little work. Nevertheless, it’s worth the effort to always consider re-expression. Re-expressions extend the
reach of all of your Statistics tools by helping more data to satisfy the conditions they require. Just think how
much more useful this course just became!

Length = 27.7782
= 771.6 yards.

=  27.778.3Length = -1/(-0.036)

(-1>1yards )

-1

3Length
= -0.023 - 0.000373 * 35 = -0.036

-1

3Length
= -0.023 - 0.000373 Strength.

Comparing re-expressionsFOR EXAMPLE
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Recap: We’ve concluded that in trying to straighten
the relationship between Diving Heart Rate and Dive
Duration for emperor penguins, using the reciprocal
re-expression goes a bit “too far” on the ladder of
powers. Now we try the logarithm. Here are the
resulting displays:

Questions: Comment on these displays. Now 
that we’ve looked at the original data (rung 1 on the
Ladder), the reciprocal (rung -1), and the logarithm
(rung 0), which re-expression of Diving Heart Rate
would you choose?
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The scatterplot is now more linear and the histogram is symmetric. The boxplots are still a bit skewed to the high end,
but less so than for the original Diving Heart Rate values. We don’t expect real data to cooperate perfectly, and the
logarithm seems like the best compromise re-expression, improving several different aspects of the data. 
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TI Tips Re-expressing data to achieve linearity

Let’s revisit the Arizona State tuition data. Recall that back in Chapter 8 when
we tried to fit a linear model to the yearly tuition costs, the residuals plot
showed a distinct curve. Residuals are high (positive) at the left, low in the
middle of the decade, and high again at the right.

This curved pattern indicates that data re-expression may be in order. If you have
no clue what re-expression to try, the Ladder of Powers may help. We just used
that approach in the fishing line example. Here, though, we can play a hunch. It
is reasonable to suspect that tuition increases at a relatively consistent percent-
age year by year. This suggests that using the logarithm of tuition may help.

• Tell the calculator to find the logs of the tuitions, and store them as a new
list. Remember that you must import the name TUIT from the LIST
NAMESmenu. The command is log(LTUIT) STO L1.

• Check the scatterplot for the re-expressed data by changing your
STATPLOT specifications to Xlist:YR and Ylist:L1. (Don’t forget to
use 9: ZoomStat to resize the window properly.)

The new scatterplot looks quite linear, but it’s really the residuals plot that will
tell the story. Remember that the TI automatically finds and stores the residu-
als whenever you ask it to calculate a regression.

• Perform the regression for the logarithm of tuition vs. year with the com-
mand LinReg(a+bx)LYR,L1,Y1. That both creates the residuals and
reports details about the model (storing the equation for later use).

• Now that the residuals are stored in RESID, set up a new scatterplot, this
time specifying Xlist:YR and Ylist:RESID.

While the residuals for the second and fifth years are comparatively large, the
curvature we saw above is gone. The pattern in these residuals seem essentially
horizontal and random. This re-expressed model is probably more useful than
the original linear model.

Do you know what the model’s equation is? Remember, it involves a log re-
expression. The calculator does not indicate that; be sure to Think when you
write your model!

And you have to Think some more when you make an estimate using the cal-
culator’s equation. Notice that this model does not actually predict tuition;
rather, it predicts the logarithm of the tuition.

For example, to estimate the 2001 tuition we must first remember that in enter-
ing our data we designated 1990 as year 0. That means we’ll use 11 for the year
2001 and evaluate Y1(11).

No, we’re not predicting the tuition to be $4! That’s the log of the estimated tu-
ition. Since logarithms are exponents, log( ) 5 4 means 5 104, or about
$10,000. When you are working with models that involve re-expressions, you’ll
often need to “backsolve” like this to find the correct predictions.

tuittuit

log tuit = 3.816 + 0.018 yr
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Plan B: Attack of the Logarithms 233

Plan B: Attack of the Logarithms
The Ladder of Powers is often successful at finding an effective re-expression.
Sometimes, though, the curvature is more stubborn, and we’re not satisfied with
the residual plots. What then?

When none of the data values is zero or negative, logarithms can be a help-
ful ally in the search for a useful model. Try taking the logs of both the x- and 
y-variables. Then re-express the data using some combination of x or log(x) vs. y
or log(y). You may find that one of these works pretty well.

Model Name x -axis y -axis Comment

Exponential x log(y) This model is the “0” power in the ladder approach, useful for values that grow by  
percentage increases.

Logarithmic log(x) y A wide range of x-values, or a scatterplot descending rapidly at the left but leveling 
off toward the right, may benefit from trying this model.

Power log(x) log(y ) The Goldilocks model: When one of the ladder’s powers is too big and the next is 
too small, this one may be just right.

When we tried to model the relationship between the length of fishing line
and its strength, we were torn between the “ ” power and the “ ”
power. The first showed slight upward curvature, and the second down-
ward. Maybe there’s a better power between those values.

The scatterplot shows what happens when we graph the logarithm of
Length against the logarithm of Strength. Technology reveals that the equa-
tion of our log–log model is

It’s interesting that the slope of this line is a power4 we didn’t
try. After all, the ladder can’t have every imaginable rung.

A warning, though! Don’t expect to be able to straighten every
curved scatterplot you find. It may be that there just isn’t a very effective
re-expression to be had. You’ll certainly encounter situations when noth-
ing seems to work the way you wish it would. Don’t set your sights too
high—you won’t find a perfect model. Keep in mind: We seek a useful
model, not perfection (or even “the best”).

(-1.08)

log(Length) = 4.49 - 1.08 log(Strength).
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FIGURE 10.8
Plotting log (Length) against log (Strength) gives a
straighter shape.

4 For logarithms, -1.08 log (Strength) = log(Strength-1.08).

TI Tips Using logarithmic re-expressions

In Chapter 7 we looked at data showing the relationship between the stop of
a camera’s lens and its shutter speed. Let’s use the attack of the logarithms to
model this situation.

Shutter speed:

2.8 4 5.6 8 11 16 22 32

• Enter these data into your calculator, shutter speed in L1 and stop in L2 .
• Create the scatterplot with Xlist:L1 and Ylist:L2. See the curve?

f/

f /stop:

1>81>151>301>601>1251>2501>5001>1000

f/
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234 CHAPTER 10    Re-expressing Data: Get It Straight!

Why Not Just Use a Curve?
When a clearly curved pattern shows up in the scatterplot, why not just fit a curve
to the data? We saw earlier that the association between the Weight of a car and its
Fuel Efficiency was not a straight line. Instead of trying to find a way to straighten
the plot, why not find a curve that seems to describe the pattern well?

We can find “curves of best fit” using essentially the same approach
that led us to linear models. You won’t be surprised, though, to learn that
the mathematics and the calculations are considerably more difficult for
curved models. Many calculators and computer packages do have the
ability to fit curves to data, but this approach has many drawbacks.

Straight lines are easy to understand. We know how to think about the
slope and the y-intercept, for example. We often want some of the other
benefits mentioned earlier, such as making the spread around the model
more nearly the same everywhere. In later chapters you will learn more
advanced statistical methods for analyzing linear associations.

We give all of that up when we fit a model that is not linear. For many
reasons, then, it is usually better to re-express the data to straighten the plot.
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TI Tips Some shortcuts to avoid

Your calculator offers many regression options in the STAT CALCmenu. There
are three that automate fitting simple re-expressions of y or x:

• 9:LnReg—fits a logarithmic model ( yN = a + blnx)

5 See the slope, 0.497? Just about 0.5. That’s because the actual relationship involves the
square root of shutter speeds. Technically the f/stop listed as 2.8 should be .
Rounding off to 2.8 makes sense for photographers, but it’s what led to the minor errors
you saw in the residuals plot.

212 L 2.8284

• Find the logarithms of each variable’s values. Keep track of where you store
everything so you don’t get confused! We put log(speed) in L3 and 
log( stop) in L4.

• Make three scatterplots:
• stop vs. log(speed) using Xlist:L3 and Ylist:L2
• log( stop) vs. speed using Xlist:L1 and Ylist:L4
• log( stop) vs. log(speed) using Xlist:L3 and Ylist:L4

• Pick your favorite. We liked log( stop) vs. log(speed) a lot! It appears to be
very straight. (Don’t be misled—this is a situation governed by the laws of
Physics. Real data are not so cooperative. Don’t expect to achieve this level
of perfection often!)

• Remember that before you check the residuals plot, you first have to calcu-
late the regression. In this situation all the errors in the residuals are just
round-off errors in the original stops. 

• Use your regression to write the equation of the model. Remember: The cal-
culator does not know there were logarithms involved. You have to Think
about that to be sure you write your model correctly.5

log(f/stop) = 1.94 + 0.497log(speed)

f/

f/
f/
f/

f/

f/
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• 0:ExpReg—fits an exponential model 
• A:PwrReg—fits a power model 

In addition, the calculator offers two other functions:

• 5:QuadReg—fits a quadratic model 
• 6:CubicReg—fits a cubic model 

These two models have a form we haven’t seen, with several x-terms. Because
x, , and are likely to be highly correlated with each other, the quadratic and
cubic models are almost sure to be unreliable to fit, difficult to understand, and
dangerous to use for predictions even slightly outside the range of the data. We
recommend that you be very wary of models of this type.

Let’s try out one of the calculator shortcuts; we’ll use the Arizona State tuition
data. (For the last time, we promise!) This time, instead of re-expressing tuition
to straighten the scatterplot, we’ll have the calculator do more of the work.

Which model should you use? You could always just play hit-and-miss, but
knowing something about the data can save a lot of time. If tuition increases by
a consistent percentage each year, then the growth is exponential.

• Choose the exponential model, and specify your variables by importing 
YR and TUIT from the list names menu. And, because you’ll want to graph
the curve later, save its equation by adding Y1 (from VARS, Y-VARS, 
Function) to create the command ExpReg LYR, LTUIT, Y1.

• Set up the scatterplot. ZoomStat should show you the curve too.
• Graph the residuals plot.

This all looks very good. is high, the curve appears to fit the points quite
well, and the residuals plot is acceptably random.

The equation of the model is 

Notice that this is the same residuals plot we saw when we re-expressed the
data and fit a line to the logarithm of tuition. That’s because what the calculator
just did is mathematically the very same thing. This new equation may look
different, but it is equivalent to our earlier model 

Not easy to see that, is it? Here’s how it works:

Initially we used a logarithmic re-expression 
to create a linear model:

Rewrite that equation in exponential form:

Simplify, using the laws of exponents:

Let and (different a and b!)

See? Your linear model created by logarithmic re-expression is the same as the
calculator model created by ExpReg.

Three of the special TI functions correspond to a simple regression model in-
volving re-expression. The calculator presents the results in an equation of a
different form, but it doesn’t actually fit that equation. Instead it is just doing
the re-expression for you automatically.

10b
= b10a

= a

log tuit = 3.816 + 0.018 year.

tuit = 6539.46(1.041year).

R2

x3x2

( yN = ax3
+ bx2

+ cx + d)
( yN = ax2

+ bx + c)

(yN = axb)
( yN = abx)

Why Not Just Use a Curve? 235

yN = abx

yN = 10a(10b)x

yN = 10a+bx

log yN = a + bx
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236 CHAPTER 10    Re-expressing Data: Get It Straight!

Type of Model
Re-expression 

Equation

Calculator’s Curve

Command Equation

Logarithmic yN = a + blogx LnReg yN = a + blnx
Exponential log  yN = a + bx ExpReg yN = abx

Power log yN = a + blog x PwrReg yN = axb

Be careful. It may look like the calculator is fitting these equations to the data
by minimizing the sum of squared residuals, but it isn’t really doing that. It
handles the residuals differently, and the difference matters. If you use a statis-
tics program to fit an “exponential model,” it will probably fit the exponential
form of the equation and give you a different answer. So think of these TI func-
tions as just shortcuts for fitting linear regressions to re-expressed versions of
your data.

You’ve seen two ways to handle bent relationships:

• straighten the data, then fit a line, or
• use the calculator shortcut to create a curve.

Note that the calculator does not have a shortcut for every model you might
want to use—models involving square roots or reciprocals, for instance. And
remember: The calculator may be quick, but there are real advantages to find-
ing linear models by actually re-expressing the data. That’s the approach we
strongly recommend you use.

Occam’s Razor
If you think that simpler
explanations and simpler
models are more likely to
give a true picture of the way
things work, then you should
look for opportunities to 
re-express your data and
simplify your analyses.

The general principle
that simpler explanations are
likely to be the better ones 
is known as Occam’s Razor,
after the English philosopher
and theologian William of
Occam (1284–1347).

Here are the equivalent models for the two approaches.

WHAT CAN GO WRONG?
u Don’t expect your model to be perfect. In Chapter 6 we quoted statistician George Box:

“All models are wrong, but some are useful.” Be aware that the real world is a messy
place and data can be uncooperative. Don’t expect to find one elusive re-expression
that magically irons out every kink in your scatterplot and produces perfect residu-
als. You aren’t looking for the Right Model, because that mythical creature doesn’t
exist. Find a useful model and use it wisely.

u Don’t stray too far from the ladder. It’s wise not to stray too far from the powers that we
suggest in the Ladder of Powers. Taking the y-values to an extremely high power
may artificially inflate , but it won’t give a useful or meaningful model, so it doesn’t
really simplify anything. It’s better to stick to powers between 2 and Even in that
range, you should prefer the simpler powers in the ladder to those in the cracks. A
square root is easier to understand than the 0.413 power. That simplicity may com-
pensate for a slightly less straight relationship.

u Don’t choose a model based on R2 alone. You’ve tried re-expressing your data to straighten
a curved relationship and found a model with a high . Beware: That doesn’t mean
the pattern is straight now. On the next page is a plot of a relationship with an 
of 98.3%.

The is about as high as we could ask for, but if you look closely, you’ll see that
there’s a consistent bend. Plotting the residuals from the least squares line makes the
bend much easier to see.

R2

R2
R2

-2.
R2
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What Can Go Wrong? 237

Remember the basic rule of data analysis: Make a picture. Before you fit a line,
always look at the pattern in the scatterplot. After you fit the line, check for linearity
again by plotting the residuals.

u Beware of multiple modes. Re- expression can often make a skewed unimodal histogram
more nearly symmetric, but it cannot pull separate modes together. A suitable re-
expression may, however, make the separation of the modes clearer, simplifying
their interpretation and making it easier to separate them to analyze individually.

u Watch out for scatterplots that turn around. Re-expression can straighten many bent
relationships but not those that go up and then down or down and then up. You
should refuse to analyze such data with methods that require a linear form.

FIGURE 10.9
The shape of the scatterplot of Birth
Rates (births per 100,000 women) in
the United States shows an oscillation
that cannot be straightened by re-
expressing the data.
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u Watch out for negative data values. It’s impossible to re-express negative values by any
power that is not a whole number on the Ladder of Powers or to re-express values
that are zero for negative powers. Most statistics programs will just mark the result
of trying to re-express such values “missing” if they can’t be re-expressed. But that
might mean that when you try a re-expression, you inadvertently lose a bunch of
data values. The effect of that loss may be surprising and may substantially change
your analysis. Because you are likely to be working with a computer package or cal-
culator, take special care that you do not lose otherwise good data values when you
choose a re-expression.

One possible cure for zeros and small negative values is to add a constant ( and 
are often used) to bring all the data values above zero.

u Watch for data far from 1. Data values that are all very far from 1 may not be much
affected by re-expression unless the range is very large. Re-expressing numbers
between 1 and 100 will have a much greater effect than re-expressing numbers
between 100,001 and 100,100. When all your data values are large (for example,
working with years), consider subtracting a constant to bring them back near 1. (For
example, consider “years since 1950” as an alternative variable for re-expression. Un-
less your data start at 1950, then avoid creating a zero by using “years since 1949.”)
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238 CHAPTER 10    Re-expressing Data: Get It Straight!

CONNECTIONS
We have seen several ways to model or summarize data. Each requires that the data have a particu-
lar simple structure. We seek symmetry for summaries of center and spread and to use a Normal
model. We seek equal variation across groups when we compare groups with boxplots or want to
compare their centers. We seek linear shape in a scatterplot so that we can use correlation to sum-
marize the scatter and regression to fit a linear model.

Data do often satisfy the requirements to use Statistics methods. But often they do not. Our
choice is to stop with just displays, to use much more complex methods, or to re-express the data 
so that we can use the simpler methods we have developed.

In this fundamental sense, this chapter connects to everything we have done thus far and to all
of the methods we will introduce throughout the rest of the book. Re-expression greatly extends the
reach and applicability of all of these methods.

WHAT HAVE WE LEARNED?

We’ve learned that when the conditions for regression are not met, a simple re-expression of the
data may help. There are several reasons to consider a re-expression:

u To make the distribution of a variable more symmetric (as we saw in Chapter 5)
u To make the spread across different groups more similar
u To make the form of a scatterplot straighter
u To make the scatter around the line in a scatterplot more consistent

We’ve learned that when seeking a useful re-expression, taking logs is often a good, simple starting
point. To search further, the Ladder of Powers or the log–log approach can help us find a good re-
expression.

We’ve come to understand that our models won’t be perfect, but that re-expression can lead
us to a useful model.

Terms
Re-expression 224. We re-express data by taking the logarithm, the square root, the reciprocal, or some other

mathematical operation on all values of a variable.

Ladder of Powers 226. The Ladder of Powers places in order the effects that many re-expressions have on the data.

Skills
u Recognize when a well-chosen re-expression may help you improve and simplify your analysis.

u Understand the value of re-expressing data to improve symmetry, to make the scatter around a
line more constant, or to make a scatterplot more linear.

u Recognize when the pattern of the data indicates that no re-expression can improve the struc-
ture of the data.

u Know how to re-express data with powers and how to find an effective re-expression for your
data using your statistics software or calculator.

u Be able to reverse any of the common re-expressions to put a predicted value or residual back
into the original units.

u Be able to describe a summary or display of a re-expressed variable, making clear how it was re-
expressed and giving its re-expressed units.

u Be able to describe a regression model fit to re-expressed data in terms of the re-expressed vari-
ables.
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Exercises 239

RE-EXPRESSION ON THE COMPUTER

Computers and calculators make it easy to re-express data. Most statistics packages offer a way to re-express
and compute with variables. Some packages permit you to specify the power of a re-expression with a slider or
other moveable control, possibly while watching the consequences of the re-expression on a plot or analysis. This,
of course, is a very effective way to find a good re-expression.

EXERCISES

1. Residuals. Suppose you have fit a linear model to
some data and now take a look at the residuals. For each
of the following possible residuals plots, tell whether you
would try a re-expression and, if so, why. 

a) Describe the pattern you see here.
b) Should we try re-expressing either variable to make

this plot straighter? Explain.

5. Models. For each of the models listed below, predict y
when
a) d)
b) e)

c)

6. More models. For each of the models listed below,
predict y when 
a) d)

b) e)
c)

7. Gas mileage. As the example in the chapter indicates,
one of the important factors determining a car’s Fuel
Efficiency is its Weight. Let’s examine this relationship
again, for 11 cars.
a) Describe the association between these variables

shown in the scatterplot on the next page.

ln yN = 1.2 + 0.8 ln x

1

2yN
= 1.2 + 0.8xlog yN = 1.2 + 0.8x

yN2
= 1.2 + 0.8x yN = 1.2 + 0.8 log x

x = 2.

1
yN

= 1.2 + 0.8x

log yN = 1.2 + 0.8 log x2yN = 1.2 + 0.8x

yN = 1.2 + 0.8 ln xln yN = 1.2 + 0.8x
x = 2.

a) b) c)

2. Residuals. Suppose you have fit a linear model to
some data and now take a look at the residuals. For each
of the following possible residuals plots, tell whether you
would try a re-expression and, if so, why.

a) b) c)

3. Airline passengers revisited. In Chapter 9, Exercise 9,
we created a linear model describing the trend in the
number of passengers departing from the Oakland (CA)
airport each month since the start of 1997. Here’s the
residual plot, but with lines added to show the order of
the values in time:
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a) Can you account for the pattern shown here?
b) Would a re-expression help us deal with this pattern?

Explain.
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4. Hopkins winds, revisited. In Chapter 5, we examined
the wind speeds in the Hopkins forest over the course of a
year. Here’s the scatterplot we saw then:

T

T
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