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We all know what it means for something to be random. Or do 
we? Many children’s games rely on chance outcomes. Rolling
dice, spinning spinners, and shuffling cards all select at random.
Adult games use randomness as well, from card games to lotter-

ies to Bingo. What’s the most important aspect of the randomness in these
games? It must be fair.

What is it about random selection that makes it seem fair? It’s really two
things. First, nobody can guess the outcome before it happens. Second, when we
want things to be fair, usually some underlying set of outcomes will be equally
likely (although in many games, some combinations of outcomes are more likely
than others).

Randomness is not always what we might think of as “at random.” Random
outcomes have a lot of structure, especially when viewed in the long run. You
can’t predict how a fair coin will land on any single toss, but you’re pretty confi-
dent that if you flipped it thousands of times you’d see about 50% heads. As we
will see, randomness is an essential tool of Statistics. Statisticians don’t think of
randomness as the annoying tendency of things to be unpredictable or haphaz-
ard. Statisticians use randomness as a tool. In fact, without deliberately applying
randomness, we couldn’t do most of Statistics, and this book would stop right
about here.1

But truly random values are surprisingly hard to get. Just to see how fair
humans are at selecting, pick a number at random from the top of the next
page. Go ahead. Turn the page, look at the numbers quickly, and pick a num-
ber at random.

Ready?
Go.

CHAPTER

11
Understanding
Randomness

“The most decisive conceptual
event of twentieth century
physics has been the discovery
that the world is not
deterministic. . . . A space was
cleared for chance.”

— Ian Hocking, 
The Taming of Chance

1 Don’t get your hopes up.
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256 CHAPTER 11    Understanding Randomness

2 You’ll find a table of random digits of this kind in the back of this book.

It’s Not Easy Being Random
Did you pick 3? If so, you’ve got company. Almost 75% of all people pick the
number 3. About 20% pick either 2 or 4. If you picked 1, well, consider yourself a
little different. Only about 5% choose 1. Psychologists have proposed reasons for
this phenomenon, but for us, it simply serves as a lesson that we’ve got to find a
better way to choose things at random.

So how should we generate random numbers? It’s surprisingly difficult to get
random values even when they’re equally likely. Computers have become a popu-
lar way to generate random numbers. Even though they often do much better than
humans, computers can’t generate truly random numbers either. Computers fol-
low programs. Start a computer from the same place, and it will always follow ex-
actly the same path. So numbers generated by a computer program are not truly
random. Technically, “random” numbers generated this way are pseudorandom
numbers. Pseudorandom values are generated in a fixed sequence, and because
computers can represent only a finite number of distinct values, the sequence of
pseudorandom numbers must eventually repeat itself. Fortunately, pseudoran-
dom values are good enough for most purposes because they are virtually indis-
tinguishable from truly random numbers.

1  2  3  4
“The generation of random
numbers is too important to be
left to chance.”

—Robert R. Coveyou,
Oak Ridge National

Laboratory

There are ways to generate random numbers so that they are both equally
likely and truly random. In the past, entire books of carefully generated random
numbers were published. The books never made the best-seller lists and probably
didn’t make for great reading, but they were quite valuable to those who needed
truly random values.2 Today, we have a choice. We can use these books or find
genuinely random digits from several Internet sites. The sites use methods like
timing the decay of a radioactive element or even the random changes of lava

Activity: Random
Behavior. ActivStats’ Random
Experiment Tool lets you
experiment with truly random
outcomes. We’ll use it a lot in the
coming chapters.

Activity: Truly Random
Values on the Internet. This
activity will take you to an
Internet site (www.random.org)
that generates all the truly
random numbers you could
want.
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Practical Randomness 257

lamps to generate truly random digits.3 In either case, a string of random digits
might look like this:

You probably have more interesting things to download than a few million
random digits, but we’ll discuss ways to use such random digits to apply ran-
domness to real situations soon. The best ways we know to generate data that
give a fair and accurate picture of the world rely on randomness, and the ways in
which we draw conclusions from those data depend on the randomness, too.

7706356513310563210508993624272872250535395513645991015328128202
6070204916508913632855351361361043794293428486909462881431793360
6944182713168919406022181281304751019321546303870481407676636740
8887003319933147508331265192321413908608674496383528968974910533
8740522639824530519902027044464984322000946238678577902639002954
8906427308645681412198226653885873285801699027843110380420067664
3217535822643800292254644943760642389043766557204107354186024508
2217726304387410092537086270581997622725849795907032825001108963

An ordinary deck of playing cards, 
like the ones used in bridge and many
other card games, consists of 52
cards. There are numbered cards 
(2 through 10), and face cards (Jack,
Queen, King, Ace) whose value de-
pends on the game you are playing.
Each card is also marked by one of
four suits (clubs, diamonds, hearts, 
or spades) whose significance is also
game-specific.

Aren’t you done shuffling yet? Even something as common as card shuf-
fling may not be as random as you might think. If you shuffle cards by the usual
method in which you split the deck in half and try to let cards fall roughly alter-
nately from each half, you’re doing a “riffle shuffle.”

How many times should you shuffle cards to make the deck random? A surpris-
ing fact was discovered by statisticians Persi Diaconis, Ronald Graham, and W. M.
Kantor. It takes seven riffle shuffles. Fewer than seven leaves order in the deck, but
after that, more shuffling does little good. Most people, though, don’t shuffle that
many times.

When computers were first used to generate hands in bridge tournaments,
some professional bridge players complained that the computer was making too
many “weird” hands—hands with 10 cards of one suit, for example. Suddenly
these hands were appearing more often than players were used to when cards
were shuffled by hand. The players assumed that the computer was doing some-
thing wrong. But it turns out that it’s humans who hadn’t been shuffling enough
to make the decks really random and have those “weird” hands appear as often
as they should.

Practical Randomness
Suppose a cereal manufacturer puts pictures of famous athletes on cards in boxes
of cereal in the hope of boosting sales. The manufacturer announces that 20% of
the boxes contain a picture of Tiger Woods, 30% a picture of David Beckham, and
the rest a picture of Serena Williams. You want all three pictures. How many
boxes of cereal do you expect to have to buy in order to get the complete set?

How can we answer questions like this? Well, one way is to buy hundreds of
boxes of cereal to see what might happen. But let’s not. Instead, we’ll consider using
a random model. Why random? When we pick a box of cereal off the shelf, we don’t
know what picture is inside. We’ll assume that the pictures are randomly placed in
the boxes and that the boxes are distributed randomly to stores around the country.
Why a model? Because we won’t actually buy the cereal boxes. We can’t afford all
those boxes and we don’t want to waste food. So we need an imitation of the real
process that we can manipulate and control. In short, we’re going to simulate reality.
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3 For example, www.random.org or www.randomnumbers.info.
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258 CHAPTER 11    Understanding Randomness

A Simulation
The question we’ve asked is how many boxes do you expect to buy to get a com-
plete card collection. But we can’t answer our question by completing a card col-
lection just once. We want to understand the typical number of boxes to open, how
that number varies, and, often, the shape of the distribution. So we’ll have to do
this over and over. We call each time we obtain a simulated answer to our ques-
tion a trial.

For the sports cards, a trial’s outcome is the number of boxes. We’ll need at
least 3 boxes to get one of each card, but with really bad luck, you could empty
the shelves of several supermarkets before finding the card you need to get all 3.
So, the possible outcomes of a trial are 3, 4, 5, or lots more. But we can’t simply
pick one of those numbers at random, because they’re not equally likely. We’d
be surprised if we only needed 3 boxes to get all the cards, but we’d probably
be even more surprised to find that it took exactly 7,359 boxes. In fact, the rea-
son we’re doing the simulation is that it’s hard to guess how many boxes we’d
expect to open.

Building a Simulation
We know how to find equally likely random digits. How can we get from there to
simulating the trial outcomes? We know the relative frequencies of the cards: 20%
Tiger, 30% Beckham, and 50% Serena. So, we can interpret the digits 0 and 1 as
finding Tiger; 2, 3, and 4 as finding Beckham; and 5 through 9 as finding Serena to
simulate opening one box. Opening one box is the basic building block, called a
component of our simulation. But the component’s outcome isn’t the result we
want. We need to observe a sequence of components until our card collection is
complete. The trial’s outcome is called the response variable; for this simulation
that’s the number of components (boxes) in the sequence.

Let’s look at the steps for making a simulation:

Specify how to model a component outcome using equally likely random digits:

1. Identify the component to be repeated. In this case, our component is the
opening of a box of cereal.

2. Explain how you will model the component’s outcome. The digits from 0 to
9 are equally likely to occur. Because 20% of the boxes contain Tiger’s picture,
we’ll use 2 of the 10 digits to represent that outcome. Three of the 10 digits can
model the 30% of boxes with David Beckham cards, and the remaining 5 dig-
its can represent the 50% of boxes with Serena. One possible assignment of
the digits, then, is

Specify how to simulate trials:

3. Explain how you will combine the components to model a trial. We pretend
to open boxes (repeat components) until our collection is complete. We do this
by looking at each random digit and indicating what picture it represents. We
continue until we’ve found all three.

4. State clearly what the response variable is. What are we interested in? We
want to find out the number of boxes it might take to get all three pictures.

Put it all together to run the simulation:

5. Run several trials. For example, consider the third line of random digits
shown earlier (p. 257):

8906427308645681412198226653885873285801699027843110380420067664.

Let’s see what happened.

0, 1 Tiger 2, 3, 4 Beckham 5, 6, 7, 8, 9 Serena.

Modern physics has shown
that randomness is not just 
a mathematical game; it is
fundamentally the way the
universe works.

Regardless of improvements in
data collection or in computer
power, the best we can ever 
do, according to quantum
mechanics . . . is predict the
probability that an electron, or
a proton, or a neutron, or any
other of nature’s constituents,
will be found here or there.
Probability reigns supreme in
the microcosmos.
—Brian Greene, The Fabric of
the Cosmos: Space, Time, and
the Texture of Reality (p. 91)
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A Simulation 259

The first random digit, 8, means you get Serena’s picture. So the first com-
ponent’s outcome is Serena. The second digit, 9, means Serena’s picture is also
in the next box. Continuing to interpret the random digits, we get Tiger’s pic-
ture (0) in the third, Serena’s (6) again in the fourth, and finally Beckham (4)
on the fifth box. Since we’ve now found all three pictures, we’ve finished one
trial of our simulation. This trial’s outcome is 5 boxes.

Now we keep going, running more trials by looking at the rest of our line
of random digits:

It’s best to create a chart to keep track of what happens:

89064 2730 8645681 41219 822665388587328580 169902 78431 1038 042006 7664.

Analyze the response variable:

6. Collect and summarize the results of all the trials. You know how to sum-
marize and display a response variable. You’ll certainly want to report the
shape, center, and spread, and depending on the question asked, you may
want to include more.

7. State your conclusion, as always, in the context of the question you wanted
to answer. Based on this simulation, we estimate that customers hoping to
complete their card collection will need to open a median of 5 boxes, but it
could take a lot more.

If you fear that these may not be accurate estimates because we ran only nine
trials, you are absolutely correct. The more trials the better, and nine is woefully
inadequate. Twenty trials is probably a reasonable minimum if you are doing this
by hand. Even better, use a computer and run a few hundred trials.

4

8

12

16

# of Boxes

✴

Activity: Bigger Samples
Are Better. The random
simulation tool can generate lots
of outcomes with a single click,
so you can see more of the long
run with less effort.

Simulating a dice gameFOR EXAMPLE

The game of 21 can be played with an ordinary 6-sided die. Competitors each roll the die repeatedly, trying to get the highest total less than or equal to
21. If your total exceeds 21, you lose.

Suppose your opponent has rolled an 18. Your task is to try to beat him by getting more than 18 points without going over 21. How many rolls do you 
expect to make, and what are your chances of winning?

Question: How will you simulate the components?

A component is one roll of the die. I’ll simulate each roll by looking at a random digit from a table or an Internet site.
The digits 1 through 6 will represent the results on the die; I’ll ignore digits 7–9 and 0.

(continued)

Trial 
Number Component Outcomes

Trial 
Outcomes: 

y = Number 
of boxes

1 89064 5 Serena, Serena, Tiger, Serena, Beckham 5
2 2730 5 Beckham, Serena, Beckham, Tiger 4
3 8645681 5 Serena, Serena, Beckham, . . . , Tiger 7
4 41219 5 Beckham, Tiger, Beckham, Tiger, Serena 5
5 822665388587328580 5 Serena, Beckham, . . . , Tiger 18
6 169902 5 Tiger, Serena, Serena, Serena, Tiger, Beckham 6
7 78431 5 Serena, Serena, Beckham, Beckham, Tiger 5
8 1038 5 Tiger, Tiger, Beckham, Serena 4
9 042006 5 Tiger, Beckham, Beckham, Tiger, Tiger, Serena 6

10 7664 . . . 5 Serena, Serena, Serena, Beckham . . . ?
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260 CHAPTER 11    Understanding Randomness

Question: How will you combine components to model a trial? What’s the response variable?

I’ll add components until my total is greater than 18, counting the number of rolls. If my total is greater than 21, it is
a loss; if not, it is a win. There are two response variables. I’ll count the number of times I roll the die, and I’ll keep track
of whether I win or lose.

Question: How would you use these random digits to run trials? Show your method clearly for two trials.

91129 58757 69274 92380 82464 33089

I’ve marked the discarded digits in color.

For Example (continued)

Number of rolls Result

4 /// Won //// //// //// //// /

5 //// //// Lost //// ////

6 //// //// /

7 ////

8 /

JUST CHECKING
The baseball World Series consists of up to seven games. The first team to win four games wins the series. The first

two are played at one team’s home ballpark, the next three at the other team’s park, and the final two (if needed) are
played back at the first park. Records over the past century show that there is a home field advantage; the home team
has about a 55% chance of winning. Does the current system of alternating ballparks even out the home field advan-
tage? How often will the team that begins at home win the series?

Let’s set up the simulation:

1. What is the component to be repeated?

2. How will you model each component from equally
likely random digits?

3. How will you model a trial by combining components?

4. What is the response variable?

5. How will you analyze the response variable?

Fifty-seven students participated in a lottery for a particularly desirable dorm room—a triple with
a fireplace and private bath in the tower. Twenty of the participants were members of the same
varsity team. When all three winners were members of the team, the other students cried foul.

Question: Could an all-team outcome reasonably be expected to happen if everyone had a fair
shot at the room?

SimulationSTEP–BY–STEP EXAMPLE

Trial #1: 9 1 1 2 9 5 8 7 5 7 6

Total: 1 2 4 9 14 20 Outcomes:  6 rolls, won

Trial #2: 9 2 7 4 9 2 3 8 0 8 2 4 6

Total: 2 6 8 11 13 17 23 Outcomes:  7 rolls, lost

Question: Suppose you run 30 trials, getting the outcomes tallied here. What is your conclusion?

Based on my simulation, when competing against an opponent who has a 
score of 18, I expect my turn to usually last 5 or 6 rolls, and I should win 
about 70% of the time.
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A Simulation 261

I’ll use a simulation to investigate whether it’s
unlikely that three varsity athletes would get the
great room in the dorm if the lottery were fair.

A component is the selection of a student.

I’ll look at two-digit random numbers.

Let 00–19 represent the 20 varsity applicants.

Let 20–56 represent the other 37 applicants.

Skip 57–99. If I get a number in this range, I’ll
throw it away and go back for another two-
digit random number.

Plan State the problem. Identify the im-
portant parts of your simulation.

Components Identify the components.

Outcomes State how you will model
each component using equally likely ran-
dom digits. You can’t just use the digits
from 0 to 9 because the outcomes you are
simulating are not multiples of 10%.

There are 20 and 37 students in the two
groups. This time you must use pairs of
random digits (and ignore some of them)
to represent the 57 students.

Trial Explain how you will combine the
components to simulate a trial. In each 
of these trials, you can’t choose the same
student twice, so you’ll need to ignore a
random number if it comes up a second
or third time. Be sure to mention this in
describing your simulation.

Response Variable Define your re-
sponse variable.

Each trial consists of identifying pairs of digits
as V (varsity) or N (nonvarsity) until 3 people
are chosen, ignoring out-of-range or repeated
numbers (X)—I can’t put the same person in
the room twice.

Mechanics Run several trials. Carefully
record the random numbers, indicating

1) the corresponding component out-
comes (here, Varsity, Nonvarsity, or
ignored number) and

2) the value of the response variable.

The response variable is whether or not all three
selected students are on the varsity team.

(continued)

Trial
Number Component Outcomes All Varsity?

1 74 02 94 39 02  77  55 
X V X N X X N No

2 18 63 33 25
V X N N No

3 05 45 88 91  56
V N X X N No

4 39 09 07
N V V No

5 65 39 45 95 43
X N N X N No

6 98 95 11 68 77 12 17
X    X   V  X  X   V   V Yes

7 26 19 89 93 77 27
N  V   X    X   X   N No
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262 CHAPTER 11    Understanding Randomness

“All varsity” occurred once, or 10% of the time.Analyze Summarize the results across all
trials to answer the initial question.

In my simulation of “fair” room draws, the three
people chosen were all varsity team members
only 10% of the time. While this result could
happen by chance, it is not particularly likely. I’m
suspicious, but I’d need many more trials and a
smaller frequency of the all-varsity outcome be-
fore I would make an accusation of unfairness.

Conclusion Describe what the simula-
tion shows, and interpret your results in
the context of the real world.

TI Tips Generating random numbers

Instead of using coins, dice, cards, or tables of random numbers, you may de-
cide to use your calculator for simulations. There are several random number
generators offered in the menu.

is of particular importance. This command will produce any
number of random integers in a specified range.

Here are some examples showing how to use for simulations:

• randomly chooses a 0 or a 1. This is an effective simula-
tion of a coin toss. You could let 0 represent tails and 1 represent heads.

• produces a random integer from 1 to 6, a good way to
simulate rolling a die.

• simulates rolling two dice. To do several rolls in a row,
just hit repeatedly.

• produces five random integers that might represent
the pictures in the cereal boxes. Our run gave us two Tigers (0, 1), no Beck-
hams (2, 3, 4), and three Serenas (5–9).

• produces three random integers between 0 and 56, a
nice way to simulate the dorm room lottery. The window shows 6 trials, but
we would skip the first one because one student was chosen twice. In none
of the remaining 5 trials did three athletes (0–19) win.

8 23 52 37
N N N No

9 16  50 83 44 
V   N X N No

10 74  17  46 85 09 
X V    N X V No
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CONNECTIONS
Simulations often generate many outcomes of a response variable, and we are often interested in
the distribution of these responses. The tools we use to display and summarize the distribution of
any real variable are appropriate for displaying and summarizing randomly generated responses
as well.

Make histograms, boxplots, and Normal probability plots of the response variables from simula-
tions, and summarize them with measures of center and spread. Be especially careful to report the
variation of your response variable.

Don’t forget to think about your analyses. Simulations can hide subtle errors. A careful analysis
of the responses can save you from erroneous conclusions based on a faulty simulation.

You may be less likely to find an outlier in simulated responses, but if you find one, you should
certainly determine how it happened.

Activity: Estimating
Summaries from Random
Outcomes. See how well you can
estimate something you can’t
know just by generating random
outcomes.

WHAT CAN GO WRONG?
u Don’t overstate your case. Let’s face it: In some sense, a simulation is always wrong.

After all, it’s not the real thing. We didn’t buy any cereal or run a room draw. So be-
ware of confusing what really happens with what a simulation suggests might hap-
pen. Never forget that future results will not match your simulated results exactly.

u Model outcome chances accurately. A common mistake in constructing a simulation is
to adopt a strategy that may appear to produce the right kind of results, but that
does not accurately model the situation. For example, in our room draw, we could
have gotten 0, 1, 2, or 3 team members. Why not just see how often these digits oc-
cur in random digits from 0 to 9, ignoring the digits 4 and up?

3 2 1 7 9 0 0 5 9 7 3 7 9 2 5 2 4 1 3 8

3 2 1 x x 0 0 x x x 3 x x 2 x 2 x 1 3 x

This “simulation” makes it seem fairly likely that three team members would be
chosen. There’s a big problem with this approach, though: The digits 0, 1, 2, and 3
occur with equal frequency among random digits, making each outcome appear to
happen 25% of the time. In fact, the selection of 0, 1, 2, or all 3 team members are not
all equally likely outcomes. In our correct simulation, we estimated that all 3 would
be chosen only about 10% of the time. If your simulation overlooks important as-
pects of the real situation, your model will not be accurate.

u Run enough trials. Simulation is cheap and fairly easy to do. Don’t try to draw conclu-
sions based on 5 or 10 trials (even though we did for illustration purposes here).
We’ll make precise how many trials to use in later chapters. For now, err on the side
of large numbers of trials.

WHAT HAVE WE LEARNED?

We’ve learned to harness the power of randomness. We’ve learned that a simulation model can
help us investigate a question for which many outcomes are possible, we can’t (or don’t want to)
collect data, and a mathematical answer is hard to calculate. We’ve learned how to base our simu-
lation on random values generated by a computer, generated by a randomizing device such as a die
or spinner, or found on the Internet. Like all models, simulations can provide us with useful insights
about the real world.

Simulations. Improve your 
predictions by running thousands
of trials.
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Terms
Random 255. An outcome is random if we know the possible values it can have, but not which particular

value it takes.

Generating random numbers 256. Random numbers are hard to generate. Nevertheless, several Internet sites offer an unlimited
supply of equally likely random values.

Simulation 258. A simulation models a real-world situation by using random-digit outcomes to mimic the un-
certainty of a response variable of interest.

Simulation component 258. A component uses equally likely random digits to model simple random occurrences whose
outcomes may not be equally likely.

Trial 258. The sequence of several components representing events that we are pretending will take
place.

Response variable 258. Values of the response variable record the results of each trial with respect to what we were
interested in.

Skills
u Be able to recognize random outcomes in a real-world situation.

u Be able to recognize when a simulation might usefully model random behavior in the real world.

u Know how to perform a simulation either by generating random numbers on a computer or cal-
culator, or by using some other source of random values, such as dice, a spinner, or a table of
random numbers.

u Be able to describe a simulation so that others can repeat it.

u Be able to discuss the results of a simulation study and draw conclusions about the question be-
ing investigated.

SIMULATION ON THE COMPUTER

Simulations are best done with the help of technology simply because more trials makes a better simulation, and
computers are fast. There are special computer programs designed for simulation, and most statistics packages
and calculators can at least generate random numbers to support a simulation.
All technology-generated random numbers are pseudorandom. The random numbers available on the Internet may
technically be better, but the differences won’t matter for any simulation of modest size. Pseudorandom numbers

generate the next random value from the previous one by a specified algorithm. But
they have to start somewhere. This starting point is called the “seed.” Most pro-
grams let you set the seed. There’s usually little reason to do this, but if you wish to,
go ahead. If you reset the seed to the same value, the programs will generate the
same sequence of “random” numbers.

Activity: Creating
Random Values. Learn to use
your statistics package to
generate random outcomes.
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