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CHAPTER

13
Experiments and
Observational
Studies

Who gets good grades? And, more importantly, why? Is there something
schools and parents could do to help weaker students improve their
grades? Some people think they have an answer: music! No, not
your iPod, but an instrument. In a study conducted at Mission Viejo

High School, in California, researchers compared the scholastic performance of
music students with that of non-music students. Guess what? The music students
had a much higher overall grade point average than the non-music students, 3.59
to 2.91. Not only that: A whopping 16% of the music students had all A’s com-
pared with only 5% of the non-music students.

As a result of this study and others, many parent groups and educators
pressed for expanded music programs in the nation’s schools. They argued that
the work ethic, discipline, and feeling of accomplishment fostered by learning to
play an instrument also enhance a person’s ability to succeed in school. They
thought that involving more students in music would raise academic perform-
ance. What do you think? Does this study provide solid evidence? Or are there
other possible explanations for the difference in grades? Is there any way to really
prove such a conjecture?

Observational Studies
This research tried to show an association between music education and grades.
But it wasn’t a survey. Nor did it assign students to get music education. Instead,
it simply observed students “in the wild,” recording the choices they made and
the outcome. Such studies are called observational studies. In observational stud-
ies, researchers don’t assign choices; they simply observe them. In addition, this
was a retrospective study, because researchers first identified subjects who stud-
ied music and then collected data on their past grades.

What’s wrong with concluding that music education causes good grades?
One high school during one academic year may not be representative of the
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Observational Studies 293

whole United States. That’s true, but the real problem is that the claim that music
study caused higher grades depends on there being no other differences between the
groups that could account for the differences in grades, and studying music was
not the only difference between the two groups of students.

We can think of lots of lurking variables that might cause the groups to per-
form differently. Students who study music may have better work habits to start
with, and this makes them successful in both music and course work. Music stu-
dents may have more parental support (someone had to pay for all those lessons),
and that support may have enhanced their academic performance, too. Maybe
they came from wealthier homes and had other advantages. Or it could be that
smarter kids just like to play musical instruments.

Observational studies are valuable for discovering trends
and possible relationships. They are used widely in public
health and marketing. Observational studies that try to discover
variables related to rare outcomes, such as specific diseases, are
often retrospective. They first identify people with the disease
and then look into their history and heritage in search of things
that may be related to their condition. But retrospective studies
have a restricted view of the world because they are usually re-
stricted to a small part of the entire population. And because
retrospective records are based on historical data, they can have
errors. (Do you recall exactly what you ate even yesterday? How
about last Wednesday?)

A somewhat better approach is to observe individuals over
time, recording the variables of interest and ultimately seeing how things turn
out. For example, we might start by selecting young students who have not be-
gun music lessons. We could then track their academic performance over several
years, comparing those who later choose to study music with those who do not.
Identifying subjects in advance and collecting data as events unfold would make
this a prospective study.

Although an observational study may identify important variables related to
the outcome we are interested in, there is no guarantee that we have found the
right or the most important related variables. Students who choose to study an
instrument might still differ from the others in some important way that we
failed to observe. It may be this difference—whether we know what it is or not—
rather than music itself that leads to better grades. It’s just not possible for obser-
vational studies, whether prospective or retrospective, to demonstrate a causal
relationship.

For rare illnesses, it’s not practical to draw a 
large enough sample to see many ill respondents,
so the only option remaining is to develop
retrospective data. For example, researchers can
interview those who have become ill.The likely
causes of both legionnaires’ disease and HIV were
initially identified from such retrospective studies
of the small populations who were initially
infected. But to confirm the causes, researchers
needed laboratory-based experiments.

Designing an observational studyFOR EXAMPLE

In early 2007, a larger-than-usual number of cats and dogs developed kidney failure; many died. Ini-
tially, researchers didn’t know why, so they used an observational study to investigate.

Question: Suppose you were called on to plan a study seeking the cause of this problem. Would your 
design be retrospective or prospective? Explain why.

I would use a retrospective observational study. Even though the incidence of
disease was higher than usual, it was still rare. Surveying all pets would have
been impractical. Instead, it makes sense to locate some who were sick and ask
about their diets, exposure to toxins, and other possible causes.
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294 CHAPTER 13    Experiments and Observational Studies

Randomized, Comparative Experiments
Is it ever possible to get convincing evidence of a cause-and-effect relationship?
Well, yes it is, but we would have to take a different approach. We could take a
group of third graders, randomly assign half to take music lessons, and forbid the
other half to do so. Then we could compare their grades several years later. This
kind of study design is called an experiment.

An experiment requires a random assignment of subjects to treatments. Only
an experiment can justify a claim like “Music lessons cause higher grades.” Ques-
tions such as “Does taking vitamin C reduce the chance of getting a cold?” and
“Does working with computers improve performance in Statistics class?” and
“Is this drug a safe and effective treatment for that disease?” require a designed
experiment to establish cause and effect.

Experiments study the relationship between two or more variables. An experi-
menter must identify at least one explanatory variable, called a factor, to manipulate
and at least one response variable to measure. What distinguishes an experiment
from other types of investigation is that the experimenter actively and deliberately
manipulates the factors to control the details of the possible treatments, and assigns
the subjects to those treatments at random. The experimenter then observes the re-
sponse variable and compares responses for different groups of subjects who have
been treated differently. For example, we might design an experiment to see
whether the amount of sleep and exercise you get affects your performance.

The individuals on whom or which we experiment are known by a variety of
terms. Humans who are experimented on are commonly called subjects or
participants. Other individuals (rats, days, petri dishes of bacteria) are commonly
referred to by the more generic term experimental unit. When we recruit subjects
for our sleep deprivation experiment by advertising in Statistics class, we’ll prob-
ably have better luck if we invite them to be participants than if we advertise that
we need experimental units.

The specific values that the experimenter chooses for a factor are called the
levels of the factor. We might assign our participants to sleep for 4, 6, or 8 hours.
Often there are several factors at a variety of levels. (Our subjects will also be as-
signed to a treadmill for 0 or 30 minutes.) The combination of specific levels from
all the factors that an experimental unit receives is known as its treatment. (Our
subjects could have any one of six different treatments—three sleep levels, each at
two exercise levels.)

How should we assign our participants to these treatments? Some students
prefer 4 hours of sleep, while others need 8. Some exercise regularly; others are
couch potatoes. Should we let the students choose the treatments they’d prefer?
No. That would not be a good idea. To have any hope of drawing a fair conclu-
sion, we must assign our participants to their treatments at random.

It may be obvious to you that we shouldn’t let the students choose the treatment
they’d prefer, but the need for random assignment is a lesson that was once hard for
some to accept. For example, physicians might naturally prefer to assign patients to
the therapy that they think best rather than have a random element such as a coin flip
determine the treatment. But we’ve known for more than a century that for the re-
sults of an experiment to be valid, we must use deliberate randomization.

Experimental design was advanced 
in the 19th century by work in psy-
chophysics by Gustav Fechner
(1801–1887), the founder of experi-
mental psychology. Fechner designed
ingenious experiments that exhibited
many of the features of modern de-
signed experiments. Fechner was care-
ful to control for the effects of factors
that might affect his results. For exam-
ple, in his 1860 book Elemente der
Psychophysik he cautioned readers to
group experiment trials together to
minimize the possible effects of time 
of day and fatigue.

An Experiment:
Manipulates the factor levels
to create treatments.
Randomly assigns subjects to
these treatment levels.
Compares the responses of
the subject groups across
treatment levels.

“He that leaves nothing to
chance will do few things ill,
but he will do very few
things.”

—Lord Halifax
(1633–1695)

The Women’s Health Initiative is a major 15-year research program funded
by the National Institutes of Health to address the most common causes of death,
disability, and poor quality of life in older women. It consists of both an observational
study with more than 93,000 participants and several randomized comparative
experiments. The goals of this study include

u giving reliable estimates of the extent to which known risk factors predict heart dis-
ease, cancers, and fractures;
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The Four Principles of Experimental Design
1. Control. We control sources of variation other than the factors we are testing

by making conditions as similar as possible for all treatment groups. For hu-
man subjects, we try to treat them alike. However, there is always a question
of degree and practicality. Controlling extraneous sources of variation re-
duces the variability of the responses, making it easier to detect differences
among the treatment groups.

Making generalizations from the experiment to other levels of the con-
trolled factor can be risky. For example, suppose we test two laundry de-
tergents and carefully control the water temperature at This would
reduce the variation in our results due to water temperature, but what could
we say about the detergents’ performance in cold water? Not much. It would
be hard to justify extrapolating the results to other temperatures.

Although we control both experimental factors and other sources of varia-
tion, we think of them very differently. We control a factor by assigning subjects
to different factor levels because we want to see how the response will change
at those different levels. We control other sources of variation to prevent them
from changing and affecting the response variable.

180°F.

u identifying “new” risk factors for these and other diseases in women;
u comparing risk factors, presence of disease at the start of the study, and new occur-

rences of disease during the study across all study components; and
u creating a future resource to identify biological indicators of disease, especially sub-

stances and factors found in blood.

That is, the study seeks to identify possible risk factors and assess how serious they
might be. It seeks to build up data that might be checked retrospectively as the
women in the study continue to be followed. There would be no way to find out
these things with an experiment because the task includes identifying new risk fac-
tors. If we don’t know those risk factors, we could never control them as factors in
an experiment.

By contrast, one of the clinical trials (randomized experiments) that received much
press attention randomly assigned postmenopausal women to take either hormone
replacement therapy or an inactive pill. The results published in 2002 and 2004
concluded that hormone replacement with estrogen carried increased risks of stroke.

No drug can be sold in the
United States without first
showing, in a suitably
designed experiment
approved by the Food and
Drug Administration (FDA),
that it’s safe and effective.
The small print on the
booklet that comes with
many prescription drugs
usually describes the
outcomes of that experiment.

Determining the treatments and response variableFOR EXAMPLE

Recap: In 2007, deaths of a large number of pet dogs and cats were ultimately traced to contamination of some brands of pet food. The manufacturer
now claims that the food is safe, but before it can be released, it must be tested.

Question: In an experiment to test whether the food is now safe for dogs to eat,1 what would be the treatments and what would be the response
variable?

The treatments would be ordinary-size portions of two dog foods: the new one from the company (the test food) and
one that I was certain was safe (perhaps prepared in my kitchen or laboratory). The response would be a veterinar-
ian’s assessment of the health of the test animals.

1 It may disturb you (as it does us) to think of deliberately putting dogs at risk in this ex-
periment, but in fact that is what is done. The risk is borne by a small number of dogs so
that the far larger population of dogs can be kept safe.

Video: An Industrial
Experiment. Manufacturers often
use designed experiments to help
them perfect new products.
Watch this video about one such
experiment.

The Four Principles of Experimental Design 295
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296 CHAPTER 13    Experiments and Observational Studies

2. Randomize. As in sample surveys, randomization allows us to equalize the
effects of unknown or uncontrollable sources of variation. It does not eliminate
the effects of these sources, but it should spread them out across the treatment
levels so that we can see past them. If experimental units were not assigned to
treatments at random, we would not be able to use the powerful methods of
Statistics to draw conclusions from an experiment. Assigning subjects to treat-
ments at random reduces bias due to uncontrolled sources of variation. Ran-
domization protects us even from effects we didn’t know about. There’s an
adage that says “control what you can, and randomize the rest.”

3. Replicate. Two kinds of replication show up in comparative experiments.
First, we should apply each treatment to a number of subjects. Only with such
replication can we estimate the variability of responses. If we have not assessed
the variation, the experiment is not complete. The outcome of an experiment
on a single subject is an anecdote, not data.

A second kind of replication shows up when the experimental units are
not a representative sample from the population of interest. We may believe
that what is true of the students in Psych 101 who volunteered for the sleep
experiment is true of all humans, but we’ll feel more confident if our results
for the experiment are replicated in another part of the country, with people of
different ages, and at different times of the year. Replication of an entire
experiment with the controlled sources of variation at different levels is an es-
sential step in science.

4. Block. The ability of randomizing to equalize variation across treatment
groups works best in the long run. For example, if we’re allocating players to
two 6-player soccer teams from a pool of 12 children, we might do so at ran-
dom to equalize the talent. But what if there were two 12-year-olds and ten
6-year-olds in the group? Randomizing may place both 12-year-olds on the
same team. In the long run, if we did this over and over, it would all equalize.
But wouldn’t it be better to assign one 12-year-old to each group (at random)
and five 6-year-olds to each team (at random)? By doing this, we would im-
prove fairness in the short run. This approach makes the division more fair by
recognizing the variation in age and allocating the players at random within
each age level. When we do this, we call the variable age a blocking variable.
The levels of age are called blocks.

Sometimes, attributes of the experimental units that we are not studying
and that we can’t control may nevertheless affect the outcomes of an experi-
ment. If we group similar individuals together and then randomize within
each of these blocks, we can remove much of the variability due to the differ-
ence among the blocks. Blocking is an important compromise between ran-
domization and control. However, unlike the first three principles, blocking is
not required in an experimental design.

The deep insight that experiments
should use random assignment is
quite an old one. It can be attributed
to the American philosopher and sci-
entist C. S. Peirce in his experiments
with J. Jastrow, published in 1885.

Activity: The Three Rules
of Experimental Design. Watch
an animated discussion of three
rules of design.

Activity: Perform an
Experiment. How well can you
read pie charts and bar charts?
Find out as you serve as the
subject in your own experiment.
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Diagrams
An experiment is carried out over time with specific actions occurring in a speci-
fied order. A diagram of the procedure can help in thinking about experiments.2

Control, randomize, and replicateFOR EXAMPLE

Recap: We’re planning an experiment to see whether the new pet food is safe for dogs to eat. We’ll feed some
animals the new food and others a food known to be safe, comparing their health after a period of time.

Questions: In this experiment, how will you implement the principles of control, randomization, and replication?

I’d control the portion sizes eaten by the dogs. To reduce possible variability from fac-
tors other than the food, I’d standardize other aspects of their environments—housing
the dogs in similar pens and ensuring that each got the same amount of water, exer-
cise, play, and sleep time, for example. I might restrict the experiment to a single breed
of dog and to adult dogs to further minimize variation.
To equalize traits, pre-existing conditions, and other unknown influences, I would assign dogs to the two feed treat-
ments randomly.
I would replicate by assigning more than one dog to each treatment to allow for variability among individual dogs. If I
had the time and funding, I might replicate the entire experiment using, for example, a different breed of dog.

2 Diagrams of this sort were introduced by David Moore in his textbooks and are widely used.

Group 1

Group 2

Treatment 1

Treatment 2

CompareRandom
Allocation

The diagram emphasizes the random allocation of subjects to treatment groups,
the separate treatments applied to these groups, and the ultimate comparison of 
results. It’s best to specify the responses that will be compared. A good way to
start comparing results for the treatment groups is with boxplots.

An ad for OptiGro plant fertilizer claims that with this product you will grow
“juicier, tastier” tomatoes.You’d like to test this claim, and wonder whether you
might be able to get by with half the specified dose. How can you set up an ex-
periment to check out the claim?

Of course, you’ll have to get some tomatoes, try growing some plants with the
product and some without, and see what happens. But you’ll need a clearer plan
than that. How should you design your experiment?

Designing an ExperimentSTEP-BY-STEP EXAMPLE
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298 CHAPTER 13    Experiments and Observational Studies

Let’s work through the design, step by step. We’ll design the simplest kind
of experiment, a completely randomized experiment in one factor. Since this is a
design for an experiment, most of the steps are part of the Think stage. The state-
ments in the right column are the kinds of things you would need to say in
proposing an experiment.You’d need to include them in the  “methods” section of
a report once the experiment is run.

Question: How would you design an experiment to test OptiGro fertilizer?

I want to know whether tomato plants grown
with OptiGro yield juicier, tastier tomatoes
than plants raised in otherwise similar circum-
stances but without the fertilizer.

I’ll evaluate the juiciness and taste of the
tomatoes by asking a panel of judges to rate
them on a scale from 1 to 7 in juiciness and in
taste.

The factor is fertilizer, specifically OptiGro 
fertilizer. I’ll grow tomatoes at three different
factor levels: some with no fertilizer, some with
half the specified amount of OptiGro, and some
with the full dose of OptiGro. These are the
three treatments.

I’ll obtain 24 tomato plants of the same vari-
ety from a local garden store.

Plan State what you want to know.

A completely randomized
experiment is the ideal simple
design, just as a simple random
sample is the ideal simple
sample—and for many of the
same reasons.

Response Specify the response variable.

Treatments Specify the factor levels
and the treatments.

Experimental Units Specify the experi-
mental units.

Experimental Design Observe the
principles of design:

Control any sources of variability
you know of and can control.

Replicate results by placing more than
one plant in each treatment group.

Randomly assign experimental units
to treatments, to equalize the effects of
unknown or uncontrollable sources of
variation.

Describe how the randomization will
be accomplished.

I’ll locate the farm plots near each other so
that the plants get similar amounts of sun
and rain and experience similar temperatures. 
I will weed the plots equally and otherwise treat
the plants alike.

I'll use 8 plants in each treatment group.

To randomly divide the plants into three groups,
first I’ll label the plants with numbers 00–23.
I’ll look at pairs of digits across a random num-
ber table. The first 8 plants identified (ignoring
numbers 24–99 and any repeats) will go in
Group 1, the next 8 in Group 2, and the remain-
ing plants in Group 3.
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I will grow the plants until the tomatoes are
mature, as judged by reaching a standard color.

I’ll harvest the tomatoes when ripe and store
them for evaluation.

Specify any other experiment details. You
must give enough details so that another
experimenter could exactly replicate your
experiment. It’s generally better to in-
clude details that might seem irrelevant
than to leave out matters that could turn
out to make a difference.

Specify how to measure the response.

I will display the results with side-by-side box-
plots to compare the three treatment groups.

I will compare the means of the groups.

Once you collect the data, you’ll need to
display them and compare the results for
the three treatment groups.

Ra
nd

om
 A

ss
ig

nm
en

t Group 1
8 plants

Group 2
8 plants

Group 3
8 plants

Treatment 1
control

Treatment 2
1/2 dose

Treatment 3
full fertilizer

Compare
juiciness
and
tastiness

24 tomato
plants from
a garden
store

Make a Picture A diagram of your 
design can help you think about it clearly.

If the differences in taste and juiciness among
the groups are greater than I would expect by
knowing the usual variation among tomatoes, 
I may be able to conclude that these differ-
ences can be attributed to treatment with
the fertilizer.

To answer the initial question, we ask
whether the differences we observe in the
means of the three groups are meaningful.

Because this is a randomized experiment,
we can attribute significant differences to
the treatments. To do this properly, we’ll
need methods from what is called “statis-
tical inference,” the subject of the rest of
this book.

I’ll set up a numerical scale of juiciness and one
of tastiness for the taste testers. Several peo-
ple will taste slices of tomato and rate them.

Does the Difference Make a Difference?
If the differences among the treatment groups are big enough, we’ll attribute the
differences to the treatments, but how can we decide whether the differences are
big enough?

Would we expect the group means to be identical? Not really. Even if the treat-
ment made no difference whatever, there would still be some variation. We assigned
the tomato plants to treatments at random. But a different random assignment
would have led to different results. Even a repeat of the same treatment on a differ-
ent randomly assigned set of plants would lead to a different mean. The real ques-
tion is whether the differences we observed are about as big as we might get just
from the randomization alone, or whether they’re bigger than that. If we decide
that they’re bigger, we’ll attribute the differences to the treatments. In that case we
say the differences are statistically significant.

Activity: Graph the Data.
Do you think there’s a significant
difference in your perception of
pie charts and bar charts?
Explore the data from your plot
perception experiment.
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How will we decide if something is different enough to be considered statisti-
cally significant? Later chapters will offer methods to help answer that question,
but to get some intuition, think about deciding whether a coin is fair. If we flip a
fair coin 100 times, we expect, on average, to get 50 heads. Suppose we get 54 heads
out of 100. That doesn’t seem very surprising. It’s well within the bounds of ordi-
nary random fluctuations. What if we’d seen 94 heads? That’s clearly outside the
bounds. We’d be pretty sure that the coin flips were not random. But what about
74 heads? Is that far enough from 50% to arouse our suspicions? That’s the sort of
question we need to ask of our experiment results.

In Statistics terminology, 94 heads would be a statistically significant differ-
ence from 50, and 54 heads would not. Whether 74 is statistically significant or not
would depend on the chance of getting 74 heads in 100 flips of a fair coin and on
our tolerance for believing that rare events can happen to us.

Back at the tomato stand, we ask whether the differences we see among the
treatment groups are the kind of differences we’d expect from randomization. A
good way to get a feeling for that is to look at how much our results vary among
plants that get the same treatment. Boxplots of our results by treatment group can
give us a general idea.

For example, Figure 13.1 shows two pairs of boxplots whose centers differ by
exactly the same amount. In the upper set, that difference appears to be larger
than we’d expect just by chance. Why? Because the variation is quite small within
treatment groups, so the larger difference between the groups is unlikely to be just
from the randomization. In the bottom pair, that same difference between the cen-
ters looks less impressive. There the variation within each group swamps the dif-
ference between the two medians. We’d say the difference is statistically significant
in the upper pair and not statistically significant in the lower pair.

In later chapters we’ll see statistical tests that quantify this intuition. For now,
the important point is that a difference is statistically significant if we don’t be-
lieve that it’s likely to have occurred only by chance.

FIGURE 13.1
The boxplots in both pairs have cen-
ters the same distance apart, but
when the spreads are large, the ob-
served difference may be just from
random fluctuation.

JUST CHECKING
1. At one time, a method called “gastric freezing” was used to treat people with peptic ulcers. An inflatable bladder

was inserted down the esophagus and into the stomach, and then a cold liquid was pumped into the bladder. Now
you can find the following notice on the Internet site of a major insurance company:

[Our company] does not cover gastric freezing (intragastric hypothermia) for chronic peptic ulcer disease. . . .

Gastric freezing for chronic peptic ulcer disease is a non-surgical treatment which was popular about 20 years ago but now is
seldom performed. It has been abandoned due to a high complication rate, only temporary improvement experienced by pa-
tients, and a lack of effectiveness when tested by double-blind, controlled clinical trials.

What did that “controlled clinical trial” (experiment) probably look like? (Don’t worry about “double-blind”; 
we’ll get to that soon.)
a) What was the factor in this experiment?
b) What was the response variable?
c) What were the treatments?

d) How did researchers decide which subjects 
received which treatment?

e) Were the results statistically significant?

Experiments and Samples
Both experiments and sample surveys use randomization to get unbiased data.
But they do so in different ways and for different purposes. Sample surveys try to
estimate population parameters, so the sample needs to be as representative of
the population as possible. By contrast, experiments try to assess the effects of
treatments. Experimental units are not always drawn randomly from the popula-
tion. For example, a medical experiment may deal only with local patients who
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have the disease under study. The randomization is in the assignment of their
therapy. We want a sample to exhibit the diversity and variability of the popula-
tion, but for an experiment the more homogeneous the subjects the more easily
we’ll spot  differences in the effects of the treatments.

Unless the experimental units are chosen from the population
at random, you should be cautious about generalizing experi-
ment results to larger populations until the experiment has been
repeated under different circumstances. Results become more
persuasive if they remain the same in completely different set-
tings, such as in a different season, in a different country, or for
a different species, to name a few.

Even without choosing experimental units from a popula-
tion at random, experiments can draw stronger conclusions
than surveys. By looking only at the differences across treat-
ment groups, experiments cancel out many sources of bias. For
example, the entire pool of subjects may be biased and not rep-
resentative of the population. (College students may need more

sleep, on average, than the general population.) When we assign subjects ran-
domly to treatment groups, all the groups are still biased, but in the same way.
When we consider the differences in their responses, these biases cancel out, al-
lowing us to see the differences due to treatment effects more clearly.

Control Treatments
Suppose you wanted to test a $300 piece of software designed to shorten down-
load times. You could just try it on several files and record the download times,
but you probably want to compare the speed with what would happen without the
software installed. Such a baseline measurement is called a control treatment, and
the experimental units to whom it is applied are called a control group.

This is a use of the word “control” in an entirely different context. Previously,
we controlled extraneous sources of variation by keeping them constant. Here, we
use a control treatment as another level of the factor in order to compare the treat-
ment results to a situation in which “nothing happens.” That’s what we did in the
tomato experiment when we used no fertilizer on the 8 tomatoes in Group 1.

Blinding
Humans are notoriously susceptible to errors in judgment.3 All of us. When we
know what treatment was assigned, it’s difficult not to let that knowledge influ-
ence our assessment of the response, even when we try to be careful.

Suppose you were trying to advise your school on which brand of cola to
stock in the school’s vending machines. You set up an experiment to see which of
the three competing brands students prefer (or whether they can tell the difference
at all). But people have brand loyalties. You probably prefer one brand already. So
if you knew which brand you were tasting, it might influence your rating. To
avoid this problem, it would be better to disguise the brands as much as possible.
This strategy is called blinding the participants to the treatment.4

But it isn’t just the subjects who should be blind. Experimenters themselves
often subconsciously behave in ways that favor what they believe. Even techni-
cians may treat plants or test animals differently if, for example, they expect them
to die. An animal that starts doing a little better than others by showing an in-
creased appetite may get fed a bit more than the experimental protocol specifies.

Experiments are rarely performed on random
samples from a population. Don’t describe the
subjects in an experiment as a random sample
unless they really are. More likely, the
randomization was in assigning subjects to
treatments.

Activity: Control Groups
in Experiments. Is a control
group really necessary?

3 For example, here we are in Chapter 13 and you’re still reading the footnotes.
4 C. S. Peirce, in the same 1885 work in which he introduced randomization, also recom-
mended blinding.
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People are so good at picking up subtle cues about treat-
ments that the best (in fact, the only) defense against such biases
in experiments on human subjects is to keep anyone who could
affect the outcome or the measurement of the response from
knowing which subjects have been assigned to which treatments.
So, not only should your cola-tasting subjects be blinded, but
also you, as the experimenter, shouldn’t know which drink is
which, either—at least until you’re ready to analyze the results.

There are two main classes of individuals who can affect the
outcome of the experiment:

u those who could influence the results (the subjects, treat-
ment administrators, or technicians)

u those who evaluate the results ( judges, treating physicians,
etc.)

When all the individuals in either one of these classes are blinded,
an experiment is said to be single-blind. When everyone in both
classes is blinded, we call the experiment double-blind. Even if
several individuals in one class are blinded—for example, both
the patients and the technicians who administer the treatment—
the study would still be just single-blind. If only some of the in-
dividuals in a class are blind—for example, if subjects are not
told of their treatment, but the administering technician is not

blind—there is a substantial risk that subjects can discern their treatment from
subtle cues in the technician’s behavior or that the technician might inadvertently
treat subjects differently. Such experiments cannot be considered truly blind.

In our tomato experiment, we certainly don’t want the people judging the
taste to know which tomatoes got the fertilizer. That makes the experiment single-
blind. We might also not want the people caring for the tomatoes to know which
ones were being fertilized, in case they might treat them differently in other ways,
too. We can accomplish this double-blinding by having some fake fertilizer for
them to put on the other plants. Read on.

Blinding by Misleading
Social science experiments can sometimes blind
subjects by misleading them about the purpose 
of a study. One of the authors participated as an
undergraduate volunteer in a (now infamous)
psychology experiment using such a blinding
method.The subjects were told that the
experiment was about three-dimensional spatial
perception and were assigned to draw a model of
a horse. While they were busy drawing, a loud
noise and then groaning were heard coming from
the room next door.The real purpose of the
experiment was to see how people reacted to the
apparent disaster.The experimenters wanted to
see whether the social pressure of being in
groups made people react to the disaster
differently. Subjects had been randomly assigned
to draw either in groups or alone; that was the
treatment.The experimenter had no interest in
how well the subjects could draw the horse, but
the subjects were blinded to the treatment
because they were misled.

BlindingFOR EXAMPLE

Recap: In our experiment to see if the new pet food is now safe, we’re feeding one group of dogs the new food and another group a food we know to be
safe. Our response variable is the health of the animals as assessed by a veterinarian.

Questions: Should the vet be blinded? Why or why not? How would you do this? (Extra credit: Can this experiment be double-blind? Would that mean
that the test animals wouldn’t know what they were eating?)

Whenever the response variable involves judgment, it is a good idea to blind the evaluator to the treatments. The vet-
erinarian should not be told which dogs ate which foods.
Extra credit: There is a need for double-blinding. In this case, the workers who care for and feed the animals should not be
aware of which dogs are receiving which food. We’ll need to make the “safe” food look as much like the “test” food as possible.

Placebos
Often, simply applying any treatment can induce an improvement. Every parent
knows the medicinal value of a kiss to make a toddler’s scrape or bump stop
hurting. Some of the improvement seen with a treatment—even an effective
treatment—can be due simply to the act of treating. To separate these two effects,
we can use a control treatment that mimics the treatment itself.

Activity: Blinded
Experiments. This narrated
account of blinding isn’t a
placebo!
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A “fake” treatment that looks just like the treatments being
tested is called a placebo. Placebos are the best way to blind
subjects from knowing whether they are receiving the treatment
or not. One common version of a placebo in drug testing is a
“sugar pill.” Especially when psychological attitude can affect
the results, control group subjects treated with a placebo may
show an improvement.

The fact is that subjects treated with a placebo sometimes
improve. It’s not unusual for 20% or more of subjects given a
placebo to report reduction in pain, improved movement, or
greater alertness, or even to demonstrate improved health or
performance. This placebo effect highlights both the impor-
tance of effective blinding and the importance of comparing
treatments with a control. Placebo controls are so effective that
you should use them as an essential tool for blinding whenever
possible.
The best experiments are usually

u randomized. u double-blind.
u comparative. u placebo-controlled.

The placebo effect is stronger when placebo
treatments are administered with authority or 
by a figure who appears to be an authority.
“Doctors” in white coats generate a stronger
effect than salespeople in polyester suits. But the
placebo effect is not reduced much even when
subjects know that the effect exists. People often
suspect that they’ve gotten the placebo if nothing
at all happens. So, recently, drug manufacturers
have gone so far in making placebos realistic that
they cause the same side effects as the drug being
tested! Such  “active placebos” usually induce a
stronger placebo effect. When those side effects
include loss of appetite or hair, the practice may
raise ethical questions.

Does ginkgo biloba improve memory? Researchers investigated the pur-
ported memory-enhancing effect of ginkgo biloba tree extract (P. R. Solomon, 
F. Adams, A. Silver, J. Zimmer, R. De Veaux, “Ginkgo for Memory Enhancement. A
Randomized Controlled Trial.” JAMA 288 [2002]: 835–840). In a randomized,
comparative, double-blind, placebo-controlled study, they administered treatments
to 230 elderly community members. One group received Ginkoba™ according to the
manufacturer’s instructions. The other received a similar-looking placebo. Thirteen
different tests of memory were administered before and after treatment. The
placebo group showed greater improvement on 7 of the tests, the treatment group
on the other 6. None showed any significant differences. Here are boxplots of one
measure.
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Blocking
We wanted to use 18 tomato plants of the same variety for our experiment, but
suppose the garden store had only 12 plants left. So we drove down to the nursery
and bought 6 more plants of that variety. We worry that the tomato plants from the
two stores are different somehow, and, in fact, they don’t really look the same.

How can we design the experiment so that the differences between the stores
don’t mess up our attempts to see differences among fertilizer levels? We can’t
measure the effect of a store the same way as we can the fertilizer because we
can’t assign it as we would a factor in the experiment. You can’t tell a tomato what
store to come from.
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Because stores may vary in the care they give plants or in the sources of their
seeds, the plants from either store are likely to be more like each other than they
are like the plants from the other store. When groups of experimental units are
similar, it’s often a good idea to gather them together into blocks. By blocking, we
isolate the variability attributable to the differences between the blocks, so that we
can see the differences caused by the treatments more clearly. Here, we would de-
fine the plants from each store to be a block. The randomization is introduced
when we randomly assign treatments within each block.

In a completely randomized design, each of the 18 plants would have an
equal chance to land in each of the three treatment groups. But we realize that
the store may have an effect. To isolate the store effect, we block on store by as-
signing the plants from each store to treatments at random. So we now have six
treatment groups, three for each block. Within each block, we’ll randomly assign
the same number of plants to each of the three treatments. The experiment is still
fair because each treatment is still applied (at random) to the same number of
plants and to the same proportion from each store: 4 from store A and 2 from
store B. Because the randomization occurs only within the blocks (plants from
one store cannot be assigned to treatment groups for the other), we call this a
randomized block design.

In effect, we conduct two parallel experiments, one for tomatoes from each
store, and then combine the results. The picture tells the story:
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Group 1
4 plants

Group 2
4 plants

Group 3
4 plants

Treatment 1
control

Treatment 2
1/2 dose

Treatment 3
full dose

Compare
juiciness
and
tastiness

12 tomatoes
from store A
and 6 from
store B

Block A
12 tomato
plants

Group 4
2 plants

Group 5
2 plants

Group 6
2 plants

Treatment 1
control

Treatment 2
1/2 dose

Treatment 3
full dose

Compare
juiciness
and
tastiness

Block B
6 tomato
plants

In a retrospective or prospective study, subjects are sometimes paired because
they are similar in ways not under study. Matching subjects in this way can re-
duce variation in much the same way as blocking. For example, a retrospective
study of music education and grades might match each student who studies an
instrument with someone of the same sex who is similar in family income but
didn’t study an instrument. When we compare grades of music students with
those of non-music students, the matching would reduce the variation due to
income and sex differences.

Blocking is the same idea for experiments as stratifying is for sampling. Both
methods group together subjects that are similar and randomize within those
groups as a way to remove unwanted variation. (But be careful to keep the terms
straight. Don’t say that we “stratify” an experiment or “block” a sample.) We use
blocks to reduce variability so we can see the effects of the factors; we’re not usu-
ally interested in studying the effects of the blocks themselves.
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Adding More Factors
There are two kinds of gardeners. Some water frequently, making sure that the
plants are never dry. Others let Mother Nature take her course and leave the wa-
tering to her. The makers of OptiGro want to ensure that their product will work
under a wide variety of watering conditions. Maybe we should include the amount
of watering as part of our experiment. Can we study a second factor at the same
time and still learn as much about fertilizer?

We now have two factors (fertilizer at three levels and irrigation at two 
levels). We combine them in all possible ways to yield six treatments:

BlockingFOR EXAMPLE

Recap: In 2007, pet food contamination put cats at risk, as well as dogs. Our experiment should probably test the
safety of the new food on both animals.

Questions: Why shouldn’t we randomly assign a mix of cats and dogs to the two treatment groups? What would you 
recommend instead?

Dogs and cats might respond differently to the foods, and that variability could obscure my
results. Blocking by species can remove that superfluous variation. I’d randomize cats to the
two treatments (test food and safe food) separately from the dogs. I’d measure their re-
sponses separately and look at the results afterward.

JUST CHECKING
2. Recall the experiment about gastric freezing, an old method for treating peptic ulcers that you read about in the

first Just Checking. Doctors would insert an inflatable bladder down the patient’s esophagus and into the stomach
and then pump in a cold liquid. A major insurance company now states that it doesn’t cover this treatment because
“double-blind, controlled clinical trials” failed to demonstrate that gastric freezing was effective.
a) What does it mean that the experiment was double-blind?
b) Why would you recommend a placebo control?
c) Suppose that researchers suspected that the effectiveness of the gastric freezing treatment might depend on

whether a patient had recently developed the peptic ulcer or had been suffering from the condition for a long
time. How might the researchers have designed the experiment?

No Fertilizer Half Fertilizer Full Fertilizer

No Added Water 1 2 3
Daily Watering 4 5 6

If we allocate the original 12 plants, the experiment now assigns 2 plants to each
of these six treatments at random. This experiment is a completely randomized
two-factor experiment because any plant could end up assigned at random to
any of the six treatments (and we have two factors).

It’s often important to include several factors in the same experiment in order
to see what happens when the factor levels are applied in different combinations.
A common misconception is that applying several factors at once makes it diffi-
cult to separate the effects of the individual factors. You may hear people say that
experiments should always be run “one factor at a time.” In fact, just the opposite

Think Like a Statistician
With two factors, we can
account for more of the
variation.That lets us see the
underlying patterns more
clearly.
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is true: Experiments with more than one factor are both more efficient and pro-
vide more information than one-at-a-time experiments. There are many ways
to design efficient multifactor experiments. You can take a whole course on the
design and analysis of such experiments.

Confounding
Professor Stephen Ceci of Cornell University performed an experiment to investi-
gate the effect of a teacher’s classroom style on student evaluations. He taught a
class in developmental psychology during two successive terms to a total of 472
students in two very similar classes. He kept everything about his teaching iden-
tical (same text, same syllabus, same office hours, etc.) and modified only his style
in class. During the fall term, he maintained a subdued demeanor. During the
spring term, he used expansive gestures and lectured with more enthusiasm,
varying his vocal pitch and using more hand gestures. He administered a stan-
dard student evaluation form at the end of each term.

The students in the fall term class rated him only an average teacher. Those in
the spring term class rated him an excellent teacher, praising his knowledge and
accessibility, and even the quality of the textbook. On the question “How much
did you learn in the course?” the average response changed from 2.93 to 4.05 on a
5-point scale.5

How much of the difference he observed was due to his difference in manner,
and how much might have been due to the season of the year? Fall term in Ithaca,
NY (home of Cornell University), starts out colorful and pleasantly warm but
ends cold and bleak. Spring term starts out bitter and snowy and ends with
blooming flowers and singing birds. Might students’ overall happiness have been
affected by the season and reflected in their evaluations?

Unfortunately, there’s no way to tell. Nothing in the data enables us to tease
apart these two effects, because all the students who experienced the subdued
manner did so during the fall term and all who experienced the expansive man-
ner did so during the spring. When the levels of one factor are associated with the
levels of another factor, we say that these two factors are confounded.

In some experiments, such as this one, it’s just not possible to avoid some con-
founding. Professor Ceci could have randomly assigned students to one of two
classes during the same term, but then we might question whether mornings or
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Group 1
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Group 2
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Group 3
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Treatment 1
control/no water

Treatment 2
1/2 dose/no water

Treatment 3
full dose/no water Compare

juiciness
and
tastiness

12 tomato
plants from 
a garden 
store

Group 4
2 plants

Group 5
2 plants

Group 6
2 plants

Treatment 4
control/water

Treatment 5
1/2 dose/water

Treatment 6
full dose/water

5 But the two classes performed almost identically well on the final exam.
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afternoons were better, or whether he really delivered the same class the second
time (after practicing on the first class). Or he could have had another professor
deliver the second class, but that would have raised more serious issues about dif-
ferences in the two professors and concern over more serious confounding.

ConfoundingFOR EXAMPLE

Recap: After many dogs and cats suffered health problems caused by contaminated foods, we’re trying to 
find out whether a newly formulated pet food is safe. Our experiment will feed some animals the new food and 
others a food known to be safe, and a veterinarian will check the response.

Question: Why would it be a bad design to feed the test food to some dogs and the safe food to cats?

This would create confounding. We would not be able to tell whether any differences in ani-
mals’ health were attributable to the food they had eaten or to differences in how the two
species responded.

A two-factor example Confounding can also arise from a badly designed mul-
tifactor experiment. Here’s a classic. A credit card bank wanted to test the sensitiv-
ity of the market to two factors: the annual fee charged for a card and the annual
percentage rate charged. Not wanting to scrimp on sample size, the bank selected
100,000 people at random from a mailing list. It sent out 50,000 offers with a low
rate and no fee and 50,000 offers with a higher rate and a $50 annual fee. Guess
what happened? That’s right—people preferred the low-rate, no-fee card. No sur-
prise. In fact, they signed up for that card at over twice the rate as the other offer.
And because of the large sample size, the bank was able to estimate the difference
precisely. But the question the bank really wanted to answer was “how much of the
change was due to the rate, and how much was due to the fee?” unfortunately,
there’s simply no way to separate out the two effects. If the bank had sent out all
four possible different treatments—low rate with no fee, low rate with $50 fee, high
rate with no fee, and high rate with $50 fee—each to 25,000 people, it could have
learned about both factors and could have also seen what happens when the two
factors occur in combination.

Lurking or Confounding?
Confounding may remind you of the problem of lurking variables we discussed
back in Chapters 7 and 9. Confounding variables and lurking variables are alike
in that they interfere with our ability to interpret our analyses simply. Each can
mislead us, but there are important differences in both how and where the confu-
sion may arise.

A lurking variable creates an association between two other variables that
tempts us to think that one may cause the other. This can happen in a regression
analysis or an observational study when a lurking variable influences both the
explanatory and response variables. Recall that countries with more TV sets per
capita tend to have longer life expectancies. We shouldn’t conclude it’s the TVs
“causing” longer life. We suspect instead that a generally higher standard of liv-
ing may mean that people can afford more TVs and get better health care, too.
Our data revealed an association between TVs and life expectancy, but economic
conditions were a likely lurking variable. A lurking variable, then, is usually
thought of as a variable associated with both y and x that makes it appear that x
may be causing y.
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Confounding can arise in experiments when some other variable associated
with a factor has an effect on the response variable. However, in a designed ex-
periment, the experimenter assigns treatments (at random) to subjects rather than
just observing them. A confounding variable can’t be thought of as causing that
assignment. Professor Ceci’s choice of teaching styles was not caused by the
weather, but because he used one style in the fall and the other in spring, he was
unable to tell how much of his students’ reactions were attributable to his teach-
ing and how much to the weather. A confounding variable, then, is associated in a
noncausal way with a factor and affects the response. Because of the confound-
ing, we find that we can’t tell whether any effect we see was caused by our factor
or by the confounding variable—or even by both working together.

Both confounding and lurking variables are outside influences that make it
harder to understand the relationship we are modeling. However, the nature of
the causation is different in the two situations. In regression and observational
studies, we can only observe associations between variables. Although we can’t
demonstrate a causal relationship, we often imagine whether x could cause y. We
can be misled by a lurking variable that influences both. In a designed experi-
ment, we often hope to show that the factor causes a response. Here we can be
misled by a confounding variable that’s associated with the factor and causes or
contributes to the differences we observe in the response.

It’s worth noting that the role of blinding in an experiment is to combat a pos-
sible source of confounding. There’s a risk that knowledge about the treatments
could lead the subjects or those interacting with them to behave differently or
could influence judgments made by the people evaluating the responses. That
means we won’t know whether the treatments really do produce different results
or if we’re being fooled by these confounding influences.

6 R. D. DeVeaux and M. Szelewski, “Optimizing Automatic Splitless Injection Parameters
for Gas Chromatographic Environmental Analysis.” Journal of Chromatographic Science 27,
no. 9 (1989): 513–518.

WHAT CAN GO WRONG?
u Don’t give up just because you can’t run an experiment. Sometimes we can’t run an experi-

ment because we can’t identify or control the factors. Sometimes it would simply be
unethical to run the experiment. (Consider randomly assigning students to take—
and be graded in—a Statistics course deliberately taught to be boring and difficult
or one that had an unlimited budget to use multimedia, real-world examples, and
field trips to make the subject more interesting.) If we can’t perform an experiment,
often an observational study is a good choice.

u Beware of confounding. Use randomization whenever possible to ensure that the fac-
tors not in your experiment are not confounded with your treatment levels. Be alert
to confounding that cannot be avoided, and report it along with your results.

u Bad things can happen even to good experiments. Protect yourself by recording additional
information. An experiment in which the air conditioning failed for 2 weeks, affect-
ing the results, was saved by recording the temperature (although that was not orig-
inally one of the factors) and estimating the effect the higher temperature had on the
response.6

It’s generally good practice to collect as much information as possible about your
experimental units and the circumstances of the experiment. For example, in the
tomato experiment, it would be wise to record details of the weather (temperature,
rainfall, sunlight) that might affect the plants and any facts available about their
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growing situation. (Is one side of the field in shade sooner than the other as the day
proceeds? Is one area lower and a bit wetter?) Sometimes we can use this extra in-
formation during the analysis to reduce biases.

u Don’t spend your entire budget on the first run. Just as it’s a good idea to pretest a survey,
it’s always wise to try a small pilot experiment before running the full-scale experi-
ment. You may learn, for example, how to choose factor levels more effectively,
about effects you forgot to control, and about unanticipated confoundings.

CONNECTIONS
The fundamental role of randomization in experiments clearly points back to our discussions of
randomization, to our experiments with simulations, and to our use of randomization in sampling.
The similarities and differences between experiments and samples are important to keep in mind
and can make each concept clearer.

If you think that blocking in an experiment resembles stratifying in a sample, you’re quite right.
Both are ways of removing variation we can identify to help us see past the variation in the data.

Experiments compare groups of subjects that have been treated differently. Graphics such as
boxplots that help us compare groups are closely related to these ideas. Think about what we look
for in a boxplot to tell whether two groups look really different, and you’ll be thinking about the
same issues as experiment designers.

Generally, we’re going to consider how different the mean responses are for different treatment
groups. And we’re going to judge whether those differences are large by using standard deviations
as rulers. (That’s why we needed to replicate results for each treatment; we need to be able to esti-
mate those standard deviations.) The discussion in Chapter 6 introduced this fundamental statisti-
cal thought, and it’s going to keep coming back over and over again. Statistics is about variation.

We’ll see a number of ways to analyze results from experiments in subsequent chapters.

WHAT HAVE WE LEARNED?

We’ve learned to recognize sample surveys, observational studies, and randomized comparative 
experiments. We know that these methods collect data in different ways and lead us to different
conclusions.

We’ve learned to identify retrospective and prospective observational studies and understand the
advantages and disadvantages of each.

We’ve learned that only well-designed experiments can allow us to reach cause-and-effect conclu-
sions. We manipulate levels of treatments to see if the factor we have identified produces changes
in our response variable.

We’ve learned the principles of experimental design:

u We want to be sure that variation in the response variable can be attributed to our factor, so we
identify and control as many other sources of variability as possible.

u Because there are many possible sources of variability that we cannot identify, we try to equalize
those by randomly assigning experimental units to treatments.

u We replicate the experiment on as many subjects as possible.
u We consider blocking to reduce variability from sources we recognize but cannot control.

We’ve learned the value of having a control group and of using blinding and placebo controls.

Finally, we’ve learned to recognize the problems posed by confounding variables in experiments and
lurking variables in observational studies.
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Terms
Observational study 292. A study based on data in which no manipulation of factors has been employed.

Retrospective study 292. An observational study in which subjects are selected and then their previous conditions or
behaviors are determined. Retrospective studies need not be based on random samples and they
usually focus on estimating differences between groups or associations between variables.

Prospective study 293. An observational study in which subjects are followed to observe future outcomes. Because
no treatments are deliberately applied, a prospective study is not an experiment. Nevertheless,
prospective studies typically focus on estimating differences among groups that might appear as the
groups are followed during the course of the study.

Experiment 294. An experiment manipulates factor levels to create treatments, randomly assigns subjects to
these treatment levels, and then compares the responses of the subject groups across treatment levels.

Random assignment 294. To be valid, an experiment must assign experimental units to treatment groups at random.
This is called random assignment.

Factor 294. A variable whose levels are manipulated by the experimenter. Experiments attempt to discover
the effects that differences in factor levels may have on the responses of the experimental units.

Response 294. A variable whose values are compared across different treatments. In a randomized experi-
ment, large response differences can be attributed to the effect of differences in treatment level.

Experimental units 294. Individuals on whom an experiment is performed. Usually called subjects or participants

when they are human.

Level 294. The specific values that the experimenter chooses for a factor are called the levels of the factor.

Treatment 294. The process, intervention, or other controlled circumstance applied to randomly assigned ex-
perimental units. Treatments are the different levels of a single factor or are made up of combina-
tions of levels of two or more factors.

Principles of u 295. Control aspects of the experiment that we know may have an effect on the response, 
experimental design but that are not the factors being studied.

u 296. Randomize subjects to treatments to even out effects that we cannot control.
u 296. Replicate over as many subjects as possible. Results for a single subject are just anec-

dotes. If, as often happens, the subjects of the experiment are not a representative sample from
the population of interest, replicate the entire study with a different group of subjects, preferably
from a different part of the population.

u 296. Block to reduce the effects of identifiable attributes of the subjects that cannot be controlled.

Statistically significant 299. When an observed difference is too large for us to believe that it is likely to have occurred nat-
urally, we consider the difference to be statistically significant. Subsequent chapters will show specific
calculations and give rules, but the principle remains the same.

Control group 301. The experimental units assigned to a baseline treatment level, typically either the default
treatment, which is well understood, or a null, placebo treatment. Their responses provide a basis
for comparison.

Blinding 301. Any individual associated with an experiment who is not aware of how subjects have been
allocated to treatment groups is said to be blinded.

Single-blind 302. There are two main classes of individuals who can affect the outcome of an experiment:
Double-blind u those who could influence the results (the subjects, treatment administrators, or technicians).

u those who evaluate the results (judges, treating physicians, etc.).

When every individual in either of these classes is blinded, an experiment is said to be single-blind.
When everyone in both classes is blinded, we call the experiment double-blind.

Placebo 303. A treatment known to have no effect, administered so that all groups experience the same
conditions. Many subjects respond to such a treatment (a response known as a placebo effect). Only
by comparing with a placebo can we be sure that the observed effect of a treatment is not due sim-
ply to the placebo effect.

Placebo effect 303. The tendency of many human subjects (often 20% or more of experiment subjects) to show a
response even when administered a placebo.
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Blocking 303. When groups of experimental units are similar, it is often a good idea to gather them together
into blocks. By blocking, we isolate the variability attributable to the differences between the blocks
so that we can see the differences caused by the treatments more clearly.

Matching 304. In a retrospective or prospective study, subjects who are similar in ways not under study may
be matched and then compared with each other on the variables of interest. Matching, like block-
ing, reduces unwanted variation.

Designs 298, 305. In a completely randomized design, all experimental units have an equal chance of 
receiving any treatment.

304. In a randomized block design, the randomization occurs only within blocks.

Confounding 306. When the levels of one factor are associated with the levels of another factor in such a way
that their effects cannot be separated, we say that these two factors are confounded.

Skills
u Recognize when an observational study would be appropriate.

u Be able to identify observational studies as retrospective or prospective, and understand the
strengths and weaknesses of each method.

u Know the four basic principles of sound experimental design—control, randomize, replicate, and
block—and be able to explain each.

u Be able to recognize the factors, the treatments, and the response variable in a description of a
designed experiment.

u Understand the essential importance of randomization in assigning treatments to experimental
units.

u Understand the importance of replication to move from anecdotes to general conclusions.

u Understand the value of blocking so that variability due to differences in attributes of the sub-
jects can be removed.

u Understand the importance of a control group and the need for a placebo treatment in some
studies.

u Understand the importance of blinding and double-blinding in studies on human subjects, and
be able to identify blinding and the need for blinding in experiments.

u Understand the value of a placebo in experiments with human participants.

u Be able to design a completely randomized experiment to test the effect of a single factor.

u Be able to design an experiment in which blocking is used to reduce variation.

u Know how to use graphical displays to compare responses for different treatment groups. Under-
stand that you should never proceed with any other analysis of a designed experiment without
first looking at boxplots or other graphical displays.

u Know how to report the results of an observational study. Identify the subjects, how the data
were gathered, and any potential biases or flaws you may be aware of. Identify the factors known
and those that might have been revealed by the study.

u Know how to compare the responses in different treatment groups to assess whether the differ-
ences are larger than could be reasonably expected from ordinary sampling variability.

u Know how to report the results of an experiment. Tell who the subjects are and how their assign-
ment to treatments was determined. Report how and in what measurement units the response
variable was measured.

u Understand that your description of an experiment should be sufficient for another researcher to
replicate the study with the same methods.

u Be able to report on the statistical significance of the result in terms of whether the observed
group-to-group differences are larger than could be expected from ordinary sampling variation.
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