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CHAPTER

14
From Randomness 
to Probability

Early humans saw a world filled with random events. To help them make
sense of the chaos around them, they sought out seers, consulted oracles,
and read tea leaves. As science developed, we learned to recognize some
events as predictable. We can now forecast the change of seasons, tell

when eclipses will occur precisely, and even make a reasonably good guess at
how warm it will be tomorrow. But many other events are still essentially ran-
dom. Will the stock market go up or down today? When will the next car pass this
corner? And we now know from quantum mechanics that the universe is in some
sense random at the most fundamental levels of subatomic particles.

But we have also learned to understand randomness. The surprising fact is
that in the long run, even truly random phenomena settle down in a way that’s
consistent and predictable. It’s this property of random phenomena that makes
the next steps we’re about to take in Statistics possible.

Dealing with Random Phenomena
Every day you drive through the intersection at College and Main. Even though
it may seem that the light is never green when you get there, you know this can’t
really be true. In fact, if you try really hard, you can recall just sailing through the
green light once in a while.

What’s random here? The light itself is governed by a timer. Its pattern isn’t
haphazard. In fact, the light may even be red at precisely the same times each day.
It’s the pattern of your driving that is random. No, we’re certainly not insinuating
that you can’t keep the car on the road. At the precision level of the 30 seconds or so
that the light spends being red or green, the time you arrive at the light is random.
Even if you try to leave your house at exactly the same time every day, whether the
light is red or green as you reach the intersection is a random phenomenon.1

1 If you somehow managed to leave your house at precisely the same time every day and
there was no variation in the time it took you to get to the light, then there wouldn’t be any
randomness, but that’s not very realistic.
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Is the color of the light completely unpredictable? When you stop to think
about it, it’s clear that you do expect some kind of regularity in your long-run
experience. Some fraction of the time, the light will be green as you get to the
intersection. How can you figure out what that fraction is?

You might record what happens at the intersection each day and graph the
accumulated percentage of green lights like this:
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FIGURE 14.1
The overall percentage of
times the light is green settles
down as you see more 
outcomes.

The first day you recorded the light, it was green. Then on the next five days, it
was red, then green again, then green, red, and red. If you plot the percentage of
green lights against days, the graph would start at 100% (because the first time, the
light was green, so 1 out of 1, for 100%). Then the next day it was red, so the accumu-
lated percentage dropped to 50% (1 out of 2). The third day it was green again (2 out
of 3, or 67% green), then green (3 out of 4, or 75%), then red twice in a row (3 out of 5,
for 60% green, and then 3 out of 6, for 50%), and so on. As you collect a new data
value for each day, each new outcome becomes a smaller and smaller fraction of the
accumulated experience, so, in the long run, the graph settles down. As it settles
down, you can see that, in fact, the light is green about 35% of the time.

When talking about random phenomena such as this, it helps to define our
terms. You aren’t interested in the traffic light all the time. You pull up to the in-
tersection only once a day, so you care about the color of the light only at these
particular times.2 In general, each occasion upon which we observe a random
phenomenon is called a trial. At each trial, we note the value of the random phe-
nomenon, and call that the trial’s outcome. (If this language reminds you of
Chapter 11, that’s not unintentional.)

For the traffic light, there are really three possible outcomes: red, yellow, or
green. Often we’re more interested in a combination of outcomes rather than in the
individual ones. When you see the light turn yellow, what do you do? If you race
through the intersection, then you treat the yellow more like a green light. If you
step on the brakes, you treat it more like a red light. Either way, you might want to
group the yellow with one or the other. When we combine outcomes like that, the
resulting combination is an event.3 We sometimes talk about the collection of all
possible outcomes and call that event the sample space.4 We’ll denote the sample

Day Light % Green

1 Green 100

2 Red 50

3 Green 66.7

4 Green 75

5 Red 60

6 Red 50
o o o

A phenomenon consists 
of trials. Each trial has an
outcome. Outcomes combine
to make events.

2 Even though the randomness here comes from the uncertainty in our arrival time, we can
think of the light itself as showing a color at random.
3 Each individual outcome is also an event.
4 Mathematicians like to use the term “space” as a fancy name for a set. Sort of like refer-
ring to that closet colleges call a dorm room as “living space.” But remember that it’s really
just the set of all outcomes.
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Empirical Probability
For any event A,

in the long run.

P(A) =

# times A occurs
total # of trials

5 In case you were wondering, Jacob’s reputation was that he was every bit as nasty as this
quotation suggests. He and his brother, who was also a mathematician, fought publicly
over who had accomplished the most.

space S. (Some books are even fancier and use the Greek letter .) For the traffic
light, S = {red, green, yellow}.

The Law of Large Numbers
What’s the probability of a green light at College and Main? Based on the graph, it
looks like the relative frequency of green lights settles down to about 35%, so
saying that the probability is about 0.35 seems like a reasonable answer. But do
random phenomena always behave well enough for this to make sense? Perhaps
the relative frequency of an event can bounce back and forth between two values
forever, never settling on just one number.

Fortunately, a principle called the Law of Large Numbers (LLN) gives us the
guarantee we need. It simplifies things if we assume that the events are
independent. Informally, this means that the outcome of one trial doesn’t affect
the outcomes of the others. (We’ll see a formal definition of independent events in
the next chapter.) The LLN says that as the number of independent trials in-
creases, the long-run relative frequency of repeated events gets closer and closer to
a single value.

Although the LLN wasn’t proven until the 18th century, everyone expects the
kind of long-run regularity that the Law describes from everyday experience. In
fact, the first person to prove the LLN, Jacob Bernoulli, thought it was pretty ob-
vious, too, as his remark quoted in the margin shows.5

Because the LLN guarantees that relative frequencies settle down in the long
run, we can now officially give a name to the value that they approach. We call it
the probability of the event. If the relative frequency of green lights at that inter-
section settles down to 35% in the long run, we say that the probability of encoun-
tering a green light is 0.35, and we write . Because this definition
is based on repeatedly observing the event’s outcome, this definition of probabil-
ity is often called empirical probability.

The Nonexistent Law of Averages
Even though the LLN seems natural, it is often misunderstood because the idea
of the long run is hard to grasp. Many people believe, for example, that an out-
come of a random event that hasn’t occurred in many trials is “due” to occur.
Many gamblers bet on numbers that haven’t been seen for a while, mistakenly be-
lieving that they’re likely to come up sooner. A common term for this is the “Law
of Averages.” After all, we know that in the long run, the relative frequency will
settle down to the probability of that outcome, so now we have some “catching
up” to do, right?

Wrong. The Law of Large Numbers says nothing about short-run behavior.
Relative frequencies even out only in the long run. And, according to the LLN, the
long run is really long (infinitely long, in fact).

The so-called Law of Averages doesn’t exist at all. But you’ll hear people talk
about it as if it does. Is a good hitter in baseball who has struck out the last six
times due for a hit his next time up? If you’ve been doing particularly well in
weekly quizzes in Statistics class, are you due for a bad grade? No. This isn’t the
way random phenomena work. There is no Law of Averages for short runs.

The lesson of the LLN is that sequences of random events don’t compensate in
the short run and don’t need to do so to get back to the right long-run probability.

P (green) = 0.35

Æ

326 CHAPTER 14    From Randomness to Probability

“For even the most stupid of
men . . . is convinced that the
more observations have been
made, the less danger there is of
wandering from one’s goal.”

—Jacob Bernoulli, 1713, 
discoverer of the LLN

Don’t let yourself think that
there’s a Law of Averages
that promises short-term
compensation for recent
deviations from expected
behavior. A belief in such a
“Law”can lead to money lost
in gambling and to poor
business decisions.

“Slump? I ain’t in no slump. I
just ain’t hittin’.”

—Yogi Berra
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Coins, Keno, and the Law of Averages You’ve just flipped a fair coin and
seen six heads in a row. Does the coin “owe” you some tails? Suppose you spend that
coin and your friend gets it in change. When she starts flipping the coin, should she
expect a run of tails? Of course not. Each flip is a new event. The coin can’t “remem-
ber” what it did in the past, so it can’t “owe” any particular outcomes in the future.

Just to see how this works in practice, we ran a simulation of 100,000 flips of a
fair coin. We collected 100,000 random numbers, letting the numbers 0 to 4 repre-
sent heads and the numbers 5 to 9 represent tails. In our 100,000 “flips,” there
were 2981 streaks of at least 5 heads. The “Law of Averages” suggests that the next
flip after a run of 5 heads should be tails more often to even things out. Actually, the
next flip was heads more often than tails: 1550 times to 1431 times. That’s 51.9%
heads. You can perform a similar simulation easily on a computer. Try it!

Of course, sometimes an apparent drift from what we expect means that the
probabilities are, in fact, not what we thought. If you get 10 heads in a row, maybe
the coin has heads on both sides!

Keno is a simple casino game in which numbers from 1 to 80
are chosen. The numbers, as in most lottery games, are sup-
posed to be equally likely. Payoffs are made depending on how
many of those numbers you match on your card. A group of
graduate students from a Statistics department decided to take
a field trip to Reno. They (very discreetly) wrote down the out-
comes of the games for a couple of days, then drove back to
test whether the numbers were, in fact, equally likely. It turned
out that some numbers were more likely to come up than oth-
ers. Rather than bet on the Law of Averages and put their

money on the numbers that were “due,” the students put their faith in the LLN—
and all their (and their friends’) money on the numbers that had come up before.
After they pocketed more than $50,000, they were escorted off the premises and
invited never to show their faces in that casino again.

JUST CHECKING
1. One common proposal for beating the lottery is to note which numbers have come up lately, eliminate those from

consideration, and bet on numbers that have not come up for a long time. Proponents of this method argue that
in the long run, every number should be selected equally often, so those that haven’t come up are due. Explain
why this is faulty reasoning.

Modeling Probability 327

The Law of Averages in
Everyday Life
“Dear Abby: My husband and
I just had our eighth child.
Another girl, and I am really
one disappointed woman. I
suppose I should thank God
she was healthy, but, Abby,
this one was supposed to
have been a boy. Even the
doctor told me that the law of
averages was in our favor 100
to one.” (Abigail Van Buren,
1974. Quoted in Karl Smith,
The Nature of Mathematics. 6th
ed. Pacific Grove, CA:
Brooks/Cole, 1991, p. 589)

If the probability of an outcome doesn’t change and the events are independent,
the probability of any outcome in another trial is always what it was, no matter
what has happened in other trials.

Modeling Probability
Probability was first studied extensively by a group of French mathematicians
who were interested in games of chance.6 Rather than experiment with the games
(and risk losing their money), they developed mathematical models of theoretical
probability. To make things simple (as we usually do when we build models),
they started by looking at games in which the different outcomes were equally
likely. Fortunately, many games of chance are like that. Any of 52 cards is equally

6 Ok, gambling.

Activity: What Is
Probability? The best way to get
a feel for probabilities is to
experiment with them. We’ll use
this random-outcomes tool many
more times.

The Law of Large Numbers.
Watch the relative frequency of a
random event approach the true
probability in the long run.
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NOTATION ALERT:

We often use capital letters—
and usually from the beginning
of the alphabet—to denote
events. We always use P to
denote probability. So,

means “the probability of the
event A is 0.35.”

When being formal, use
decimals (or fractions) for the
probability values, but
sometimes, especially when
talking more informally, it’s
easier to use percentages.

P (A) = 0.35

Activity: Multiple Discrete
Outcomes. The world isn’t all
heads or tails. Experiment with
an event with 4 random
alternative outcomes.

Is that all there is to it? Finding the probability of any event when the out-
comes are equally likely is straightforward, but not necessarily easy. It gets hard
when the number of outcomes in the event (and in the sample space) gets big.
Think about flipping two coins. The sample space is S and each
outcome is equally likely. So, what’s the probability of getting exactly one head and
one tail? Let’s call that event A. Well, there are two outcomes in the event 
A out of the 4 possible equally likely ones in S, so or .

OK, now flip 100 coins. What’s the probability of exactly 67 heads? Well, first, how
many outcomes are in the sample space? S = {HHHHHHHHHHH . . . H, HH . . . T, . . .}
Hmm. A lot. In fact, there are 1,267,650,600,228,229,401,496,703,205,376
different outcomes possible when flipping 100 coins. To answer the question, we’d
still have to figure out how many ways there are to get 67 heads. That’s coming in
Chapter 17; stay tuned!

1
2P(A) =

2
4,=  {HT,TH}

=  {HH,HT,TH,TT}

likely to be the next one dealt from a well-shuffled deck. Each face of a die is
equally likely to land up (or at least it should be).

It’s easy to find probabilities for events that are made up of several equally
likely outcomes. We just count all the outcomes that the event contains. The prob-
ability of the event is the number of outcomes in the event divided by the total
number of possible outcomes. We can write

For example, the probability of drawing a face card (JQK) from a deck is

P(face card) =

# face cards
# cards

=

12
52

=

3
13

.

P(A) =

# outcomes in A
# of possible outcomes

.

328 CHAPTER 14    From Randomness to Probability

Don’t get trapped into thinking that random events are always equally
likely. The chance of winning a lottery—especially lotteries with very large
payoffs—is small. Regardless, people continue to buy tickets. In an attempt to
understand why, an interviewer asked someone who had just purchased a lot-
tery ticket, “What do you think your chances are of winning the lottery?” The
reply was, “Oh, about 50–50.” The shocked interviewer asked, “How do you
get that?” to which the response was, “Well, the way I figure it, either I win or I
don’t!”

The moral of this story is that events are not always equally likely.

Personal Probability
What’s the probability that your grade in this Statistics course will be an A? You
may be able to come up with a number that seems reasonable. Of course, no mat-
ter how confident or depressed you feel about your chances for success, your
probability should be between 0 and 1. How did you come up with this probabil-
ity? Is it an empirical probability? Not unless you plan on taking the course over
and over (and over . . .), calculating the proportion of times you get an A. And,
unless you assume the outcomes are equally likely, it will be hard to find the the-
oretical probability. But people use probability in a third sense as well.

We use the language of probability in everyday speech to express a degree of
uncertainty without basing it on long-run relative frequencies or mathematical
models. Your personal assessment of your chances of getting an A expresses your
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Formal Probability 329

uncertainty about the outcome. That uncertainty may be based on how comfort-
able you’re feeling in the course or on your midterm grade, but it can’t be based
on long-run behavior. We call this third kind of probability a subjective or
personal probability.

Although personal probabilities may be based on experience, they’re not
based either on long-run relative frequencies or on equally likely events. So they
don’t display the kind of consistency that we’ll need probabilities to have. For that
reason, we’ll stick to formally defined probabilities. You should be alert to the dif-
ference.

The First Three Rules for Working 
with Probability

1. Make a picture.
2. Make a picture.
3. Make a picture.

We’re dealing with probabilities now, not data, but the three rules don’t
change. The most common kind of picture to make is called a Venn diagram. We’ll
use Venn diagrams throughout the rest of this chapter. Even experienced statisti-
cians make Venn diagrams to help them think about probabilities of compound
and overlapping events. You should, too.

Formal Probability
For some people, the phrase “50/50” means something
vague like “I don’t know” or “whatever.” But when we
discuss probabilities of outcomes, it takes on the pre-
cise meaning of equally likely. Speaking vaguely about
probabilities will get us into trouble, so whenever we
talk about probabilities, we’ll need to be precise.7 And
to do that, we’ll need to develop some formal rules8

about how probability works.

1. If the probability is 0, the event can’t occur, and like-
wise if it has probability 1, it always occurs. Even if you
think an event is very unlikely, its probability can’t be
negative, and even if you’re sure it will happen, its
probability can’t be greater than 1. So we require that

A probability is a number between 0 and 1.

For any event A, 0 P(A) 1.◊◊

John Venn (1834–1923) created the Venn diagram. His book
on probability, The Logic of Chance, was “strikingly original and
considerably influenced the development of the theory of Statis-
tics,” according to John Maynard Keynes, one of the luminaries
of Economics.

Surprising Probabilities
We’ve been careful to discuss probabilities only for
situations in which the outcomes were finite, or even
countably infinite. But if the outcomes can take on any
numerical value at all (we say they are continuous), things
can get surprising. For example, what is the probability
that a randomly selected child will be exactly 3 feet tall?
Well, if we mean 3.00000 . . . feet, the answer is zero. No
randomly selected child—even one whose height would
be recorded as 3 feet, will be exactly 3 feet tall (to an
infinite number of decimal places). But, if you’ve grown
taller than 3 feet, there must have been a time in your life
when you actually were exactly 3 feet tall, even if only for a
second. So this is an outcome with probability 0 that not
only has happened—it has happened to you.

We’ve seen another example of this already in Chapter 6
when we worked with the Normal model. We said that the
probability of any specific value—say, z 0.5—is zero.The
model gives a probability for any interval of values, such as
0.49 z 0.51.The probability is smaller if we ask for 0.499 
z 0.501, and smaller still for 0.49999999 z 0.50000001.
Well, you get the idea. Continuous probabilities are useful
for the mathematics behind much of what we’ll do, but it’s
easier to deal with probabilities for countable outcomes.

<<<
<<<

=

7 And to be precise, we will be talking only about sample spaces
where we can enumerate all the outcomes. Mathematicians call
this a countable number of outcomes.
8 Actually, in mathematical terms, these are axioms—state-
ments that we assume to be true of probability. We’ll derive
other rules from these in the next chapter.
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NOTATION ALERT:

We write as 
The symbol means “union,”
representing the outcomes in
event A or event B (or both).
The symbol means
“intersection,”representing
outcomes that are in both event
A and event B. We write P(A
and B) as P(AA ¨ B).

¨

´

P(A ´ B).P(A or B)

2. If a random phenomenon has only one possible outcome, it’s not very inter-
esting (or very random). So we need to distribute the probabilities among all
the outcomes a trial can have. How can we do that so that it makes sense?
For example, consider what you’re doing as you read this book. The possible
outcomes might be

A: You read to the end of this chapter before stopping.
B: You finish this section but stop reading before the end of the chapter.
C: You bail out before the end of this section.

When we assign probabilities to these outcomes, the first thing to be sure of is
that we distribute all of the available probability. Something always occurs,
so the probability of the entire sample space is 1.

Making this more formal gives the Probability Assignment Rule.

The set of all possible outcomes of a trial 
must have probability 1.

3. Suppose the probability that you get to class on time is 0.8. What’s the proba-
bility that you don’t get to class on time? Yes, it’s 0.2. The set of outcomes that
are not in the event A is called the complement of A, and is denoted AC. This
leads to the Complement Rule:

The probability of an event occurring 
is 1 minus the probability that it doesn’t occur.

P(A) = 1 � P(AC)

P(S) = 1

330 CHAPTER 14    From Randomness to Probability

Ac

A

The set A and its complement
AC. Together, they make up the
entire sample space S.

Applying the Complement RuleFOR EXAMPLE

Recap: We opened the chapter by looking at the traffic light at the corner of College and Main, observing that when we arrive at
that intersection, the light is green about 35% of the time.

Question: If , what’s the probability the light isn’t green when you get to College and Main?

“Not green” is the complement of “green,” so 

There’s a 65% chance I won’t have a green light.

= 1 - 0.35 = 0.65
P(not green) = 1 - P(green)

P(green) = 0.35

B

A

Two disjoint sets, A and B.

4. Suppose the probability that (A) a randomly selected student is a sophomore
is 0.20, and the probability that (B) he or she is a junior is 0.30. What is the
probability that the student is either a sophomore or a junior, written

If you guessed 0.50, you’ve deduced the Addition Rule, which
says that you can add the probabilities of events that are disjoint. To see
whether two events are disjoint, we take them apart into their component
outcomes and check whether they have any outcomes in common. Disjoint
(or mutually exclusive) events have no outcomes in common. The Addition
Rule states,

For two disjoint events A and B, the probability that one or the other 
occurs is the sum of the probabilities of the two events.

P(A ´ B) = P(A) + P(B), pprovided that A and B are disjoint.

P(A ´ B)?
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Because sample space outcomes are disjoint, we have an easy way to
check whether the probabilities we’ve assigned to the possible outcomes are
legitimate. The Probability Assignment Rule tells us that the sum of the
probabilities of all possible outcomes must be exactly 1. No more, no less. For
example, if we were told that the probabilities of selecting at random a fresh-
man, sophomore, junior, or senior from all the undergraduates at a school
were 0.25, 0.23, 0.22, and 0.20, respectively, we would know that something
was wrong. These “probabilities” sum to only 0.90, so this is not a legitimate
probability assignment. Either a value is wrong, or we just missed some pos-
sible outcomes, like “pre-freshman” or “postgraduate” categories that soak
up the remaining 0.10. Similarly, a claim that the probabilities were 0.26, 0.27,
0.29, and 0.30 would be wrong because these “probabilities” sum to more
than 1.

But be careful: The Addition Rule doesn’t work for events that aren’t
disjoint. If the probability of owning an MP3 player is 0.50 and the probabil-
ity of owning a computer is 0.90, the probability of owning either an MP3
player or a computer may be pretty high, but it is not 1.40! Why can’t you add
probabilities like this? Because these events are not disjoint. You can own
both. In the next chapter, we’ll see how to add probabilities for events like
these, but we’ll need another rule.

5. Suppose your job requires you to fly from Atlanta to Houston every Monday
morning. The airline’s Web site reports that this flight is on time 85% of the
time. What’s the chance that it will be on time two weeks in a row? That’s the
same as asking for the probability that your flight is on time this week and it’s
on time again next week. For independent events, the answer is very simple.
Remember that independence means that the outcome of one event doesn’t
influence the outcome of the other. What happens with your flight this week
doesn’t influence whether it will be on time next week, so it’s reasonable to
assume that those events are independent. The Multiplication Rule says that
for independent events, to find the probability that both events occur, we just
multiply the probabilities together. Formally,

For two independent events A and B, the probability that both A and B 
occur is the product of the probabilities of the two events.

A and B are independent.
P(A  ̈B) = P(A) * P(B), provided that

Applying the Addition RuleFOR EXAMPLE

Recap: When you get to the light at College and Main, it’s either red, green, or yellow. We know that 

Question: Suppose we find out that P(yellow) is about 0.04. What’s the probability the light is red?

To find the probability that the light is green or yellow, I can use the Addition Rule because these are disjoint events:
The light can’t be both green and yellow at the same time.

Red is the only remaining alternative, and the probabilities must add up to 1, so

 = 1 - 0.39 = 0.61
 = 1 - P(green ´ yellow)

 P(red) = P(not (green ´ yellow)

P(green ´ yellow) = 0.35 + 0.04 = 0.39

P(green) = 0.35.

B

A

A ��B

Two sets A and B that are not
disjoint. The event is
their intersection.

(A ¨ B)

“Baseball is 90% mental. The
other half is physical.”

—Yogi Berra

Activity: Addition Rule for
Disjoint Events. Experiment with
disjoint events to explore the
Addition Rule.
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This rule can be extended to more than two independent events. What’s the
chance of your flight being on time for a month—four Mondays in a row? We
can multiply the probabilities of it happening each week:

or just over 50–50. Of course, to calculate this probability, we have used the
assumption that the four events are independent.

Many Statistics methods require an Independence Assumption, but
assuming independence doesn’t make it true. Always Think about whether
that assumption is reasonable before using the Multiplication Rule.

0.85 * 0.85 * 0.85 * 0.85 = 0.522

332 CHAPTER 14    From Randomness to Probability

Applying the Multiplication Rule (and others)FOR EXAMPLE

Recap: We’ve determined that the probability that we encounter a green light at the corner of College and Main is 0.35, a yellow light 0.04, and a red
light 0.61. Let’s think about your morning commute in the week ahead.

Question: What’s the probability you find the light red both Monday and Tuesday?

Because the color of the light I see on Monday doesn’t influence the color I’ll see on Tuesday, these are independent
events; I can use the Multiplication Rule:

There’s about a 37% chance I’ll hit red lights both Monday and Tuesday mornings.

Question: What’s the probability you don’t encounter a red light until Wednesday?

For that to happen, I’d have to see green or yellow on Monday, green or yellow on Tuesday, and then red on Wednesday.
I can simplify this by thinking of it as not red on Monday and Tuesday and then red on Wednesday.

There’s about a 9% chance that this week I’ll hit my first red light there on Wednesday morning.

Question: What’s the probability that you’ll have to stop at least once during the week?

Having to stop at least once means that I have to stop for the light either 1, 2, 3, 4, or 5 times next week. It’s easier
to think about the complement: never having to stop at a red light. Having to stop at least once means that I didn’t
make it through the week with no red lights.

There’s over a 99% chance I’ll hit at least one red light sometime this week.

Note that the phrase “at least” is often a tip-off to think about the complement. Something that happens at
least once does happen. Happening at least once is the complement of not happening at all, and that’s easier
to find.

 = 0.991
 = 1 - 0.0090
 = 1 - (0.39)(0.39)(0.39)(0.39)(0.39)
 = 1 - P(not red ¨ not red ¨ not red ¨ not red ¨ not red)
 = 1 - P(no red lights for 5 days in a row)

P(having to stop at the light at least once in 5 days)

= 0.092781
= (0.39)(0.39)(0.61)
= P(not red) * P(not red) * P(red) P (not red Monday ¨ not red Tuesday ¨ red Wednesday)

 P(not red) = 1 - P(red) = 1 - 0.61 = 0.39, so

 = 0.3721
 = (0.61)(0.61)

 P(red Monday ¨ red Tuesday) = P(Red) * P(red)

In informal English, you may
see “some” used to mean 
“at least one.” “What’s the
probability that some of the
eggs in that carton are
broken?” means at least one.

Activity: Multiplication
Rule for Independent Events.
Experiment with independent
random events to explore the
Multiplication Rule.

Activity: Probabilities of
Compound Events. The Random
tool also lets you experiment with
Compound random events to see
if they are independent.
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JUST CHECKING
2. Opinion polling organizations contact their respondents by telephone. Random telephone numbers are gener-

ated, and interviewers try to contact those households. In the 1990s this method could reach about 69% of U.S.
households. According to the Pew Research Center for the People and the Press, by 2003 the contact rate had 
risen to 76%. We can reasonably assume each household’s response to be independent of the others. What’s the
probability that . . .

The five rules we’ve seen can be used in a number of different combinations to answer a surpris-
ing number of questions. Let’s try one to see how we might go about it.

In 2001, Masterfoods, the manufacturers of M&M’s® milk chocolate candies, decided to add
another color to the standard color lineup of brown, yellow, red, orange, blue, and green. To de-
cide which color to add, they surveyed people in nearly every country of the world and asked
them to vote among purple, pink, and teal.The global winner was purple! 

In the United States, 42% of those who voted said purple, 37% said teal, and only 19% said
pink. But in Japan the percentages were 38% pink, 36% teal, and only 16% purple. Let’s use Japan’s
percentages to ask some questions:

1. What’s the probability that a Japanese M&M’s survey respondent selected at random pre-
ferred either pink or teal?

2. If we pick two respondents at random, what’s the probability that they both selected purple?
3. If we pick three respondents at random, what’s the probability that at least one preferred 

purple?

ProbabilitySTEP–BY–STEP EXAMPLE

The M&M’s Web site reports the proportions of
Japanese votes by color. These give the proba-
bility of selecting a voter who preferred each of
the colors:

 P(purple) = 0.16
 P(teal) = 0.36
 P(pink) = 0.38

The probability of an event is its long-term
relative frequency. It can be determined in
several ways: by looking at many replica-
tions of an event, by deducing it from
equally likely events, or by using some
other information. Here, we are told the
relative frequencies of the three responses.

Each is between 0 and 1, but they don’t all add
up to 1. The remaining 10% of the voters must
have not expressed a preference or written in
another color. I’ll put them together into “no
preference” and add .

With this addition, I have a legitimate assign-
ment of probabilities.

P(no preference) = 0.10

Make sure the probabilities are legitimate.
Here, they’re not. Either there was a mis-
take, or the other voters must have
chosen a color other than the three given.
A check of the reports from other coun-
tries shows a similar deficit, so probably
we’re seeing those who had no preference
or who wrote in another color.

a) the interviewer successfully contacts the next
household on her list?

b) the interviewer successfully contacts both of the
next two households on her list?

c) the interviewer’s first successful contact is the
third household on the list?

d) the interviewer makes at least one successful con-
tact among the next five households on the list?
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334 CHAPTER 14    From Randomness to Probability

The events “Pink” and “Teal” are individual 
outcomes (a respondent can’t choose both 
colors), so they are disjoint. I can apply the 
Addition Rule.

Plan Decide which rules to use and
check the conditions they require.

 = 0.38 + 0.36 = 0.74
 P(pink ´ teal) = P(pink) + P(teal)Mechanics Show your work.

Question 1. What’s the probability that a Japanese M&M’s survey respondent selected at 
random preferred either pink or teal?

The probability that the respondent said pink
or teal is 0.74.

Conclusion Interpret your results in the
proper context.

Ç Independence Assumption: It’s unlikely
that the choice made by one random re-
spondent affected the choice of the other,
so the events seem to be independent. I
can use the Multiplication Rule.

Plan The word “both” suggests we want
P(A and B), which calls for the Multiplica-
tion Rule. Think about the assumption.

P(both purple)

5 P(first respondent picks purple
second respondent picks purple)

5 P(first respondent picks purple) 3

P(second respondent picks purple)
5 0.16 3 0.16 5 0.0256

¨

Mechanics Show your work.
For both respondents to pick purple, each
one has to pick purple.

Question 2. If we pick two respondents at random, what’s the probability that they both said
purple?

The probability that both respondents pick pur-
ple is 0.0256.

Conclusion Interpret your results in the
proper context.
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Question 3. If we pick three respondents at random, what’s the probability that at least one 
preferred purple?

5 1 2 P(not purple not
purple not purple).

Ç Independence Assumption: These are 
independent events because they are
choices by three random respondents. 
I can use the Multiplication Rule.

¨

¨

= 1 - P(none picked purple).
= P({none picked purple}C)

P(at least one picked purple)Plan The phrase “at least . . .” often
flags a question best answered by looking
at the complement, and that’s the best ap-
proach here. The complement of “At least
one preferred purple” is “None of them 
preferred purple.”

Think about the assumption.

= 0.4073
= 1 - 0.5927
= 1 - (0.84)(0.84)(0.84)

purple x  not purple)
= 1 - P(not purple x  not

 = 1 - P(none picked purple)
P(at least one picked purple)

 = 1 - 0.16 = 0.84
 P(not purple) = 1 - P(purple)Mechanics First we find P(not purple)

with the Complement Rule.

There’s about a 40.7% chance that at least
one of the respondents picked purple.

Conclusion Interpret your results in the
proper context.

WHAT CAN GO WRONG?
u Beware of probabilities that don’t add up to 1. To be a legitimate probability assignment,

the sum of the probabilities for all possible outcomes must total 1. If the sum is less than
1, you may need to add another category (“other”) and assign the remaining probability
to that outcome. If the sum is more than 1, check that the outcomes are disjoint. If they’re
not, then you can’t assign probabilities by just counting relative frequencies.

u Don’t add probabilities of events if they’re not disjoint. Events must be disjoint to use the
Addition Rule. The probability of being under 80 or a female is not the probability of
being under 80 plus the probability of being female. That sum may be more than 1.

u Don’t multiply probabilities of events if they’re not independent. The probability of selecting
a student at random who is over tall and on the basketball team is not the prob-
ability the student is over tall times the probability he’s on the basketball team.
Knowing that the student is over changes the probability of his being on the
basketball team. You can’t multiply these probabilities. The multiplication of proba-
bilities of events that are not independent is one of the most common errors people
make in dealing with probabilities.

u Don’t confuse disjoint and independent. Disjoint events can’t be independent. If A = {you
get an A in this class} and B = {you get a B in this class}, A and B are disjoint. Are they
independent? If you find out that A is true, does that change the probability of B? You
bet it does! So they can’t be independent. we’ll return to this issue in the next chapter.

6¿10–

6¿10–

6¿10–

Next we calculate P(none picked purple)
by using the Multiplication Rule.

Then we can use the Complement Rule to
get the probability we want.
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CONNECTIONS
We saw in the previous three chapters that randomness plays a critical role in gathering data. That
fact alone makes it important that we understand how random events behave. The rules and con-
cepts of probability give us a language to talk and think about random phenomena. From here on,
randomness will be fundamental to how we think about data, and probabilities will show up in
every chapter.

We began thinking about independence back in Chapter 3 when we looked at contingency ta-
bles and asked whether the distribution of one variable was the same for each category of another.
Then, in Chapter 12, we saw that independence was fundamental to drawing a Simple Random
Sample. For computing compound probabilities, we again ask about independence. And we’ll con-
tinue to think about independence throughout the rest of the book.

Our interest in probability extends back to the start of the book. We’ve talked about “relative fre-
quencies” often. But—let’s be honest—that’s just a casual term for probability. For example, you
can now rephrase the 68–95–99.7 Rule to talk about the probability that a random value selected
from a Normal model will fall within 1, 2, or 3 standard deviations of the mean.

Why not just say “probability” from the start? Well, we didn’t need any of the formal rules of
this chapter (or the next one), so there was no point to weighing down the discussion with those
rules. And “relative frequency” is the right intuitive way to think about probability in this course,
so you’ve been thinking right all along.

Keep it up.

WHAT HAVE WE LEARNED?

We’ve learned that probability is based on long-run relative frequencies. We’ve thought about the
Law of Large Numbers and noted that it speaks only of long-run behavior. Because the long run is
a very long time, we need to be careful not to misinterpret the Law of Large Numbers. Even when
we’ve observed a string of heads, we shouldn’t expect extra tails in subsequent coin flips.

Also, we’ve learned some basic rules for combining probabilities of outcomes to find probabili-
ties of more complex events. These include

u the Probability Assignment Rule,
u the Complement Rule,
u the Addition Rule for disjoint events, and
u the Multiplication Rule for independent events.

Terms
Random phenomenon 324. A phenomenon is random if we know what outcomes could happen, but not which particular

values will happen.

Trial 325. A single attempt or realization of a random phenomenon.

Outcome 325. The outcome of a trial is the value measured, observed, or reported for an individual instance
of that trial.

Event 325. A collection of outcomes. Usually, we identify events so that we can attach probabilities to
them. We denote events with bold capital letters such as A, B, or C.

Sample Space 325. The collection of all possible outcome values. The sample space has a probability of 1.

Law of Large Numbers 326. The Law of Large Numbers states that the long-run relative frequency of repeated independ-
ent events gets closer and closer to the true relative frequency as the number of trials increases.

Independence (informally) 326. Two events are independent if learning that one event occurs does not change the probability
that the other event occurs.
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Probability 326. The probability of an event is a number between 0 and 1 that reports the likelihood of that
event’s occurrence. We write P(A) for the probability of the event A.

Empirical probability 326. When the probability comes from the long-run relative frequency of the event’s occurrence, it
is an empirical probability.

Theoretical probability 327. When the probability comes from a model (such as equally likely outcomes), it is called a the-

oretical probability.

Personal probability 328. When the probability is subjective and represents your personal degree of belief, it is called a
personal probability.

The Probability 330. The probability of the entire sample space must be 1. P(S) = 1.
Assignment Rule

Complement Rule 330. The probability of an event occurring is 1 minus the probability that it doesn’t occur.

Disjoint (Mutually exclusive) 330. Two events are disjoint if they share no outcomes in common. If A and B are disjoint, then
knowing that A occurs tells us that B cannot occur. Disjoint events are also called “mutually
exclusive.”

Addition Rule 330. If A and B are disjoint events, then the probability of A or B is

Legitimate probability 331. An assignment of probabilities to outcomes is legitimate if
assignment u each probability is between 0 and 1 (inclusive).

u the sum of the probabilities is 1.

Multiplication Rule 331. If A and B are independent events, then the probability of A and B is

Independence Assumption 332. We often require events to be independent. (So you should think about whether this assump-
tion is reasonable.)

Skills
u Understand that random phenomena are unpredictable in the short term but show long-run

regularity.

u Be able to recognize random outcomes in a real-world situation.

u Know that the relative frequency of a random event settles down to a value called the (empirical)
probability. Know that this is guaranteed for independent events by the Law of Large Numbers.

u Know the basic definitions and rules of probability.

u Recognize when events are disjoint and when events are independent. Understand the difference
and that disjoint events cannot be independent.

u Be able to use the facts about probability to determine whether an assignment of probabilities is
legitimate. Each probability must be a number between 0 and 1, and the sum of the probabili-
ties assigned to all possible outcomes must be 1.

u Know how and when to apply the Addition Rule. Know that events must be disjoint for the Addi-
tion Rule to apply.

u Know how and when to apply the Multiplication Rule. Know that events must be independent
for the Multiplication Rule to apply. Be able to use the Multiplication Rule to find probabilities for
combinations of independent events.

u Know how to use the Complement Rule to make calculating probabilities simpler. Recognize that
probabilities of “at least. . .” are likely to be simplified in this way.

u Be able to use statements about probability in describing a random phenomenon. You will need
this skill soon for making statements about statistical inference.

u Know and be able to use the terms “sample space”, “disjoint events”, and “independent events”
correctly.

P(A ¨ B) = P(A) * P(B).

P(A ´ B) = P(A) + P(B).

P(A) = 1 - P(AC)
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