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CHAPTER

15
Probability 
Rules!

Pull a bill from your wallet or pocket without looking at it. An outcome of
this trial is the bill you select. The sample space is all the bills in circulation:

1 These are
all the possible outcomes. (In spite of what you may have seen in bank rob-

bery movies, there are no $500 or $1000 bills.)
We can combine the outcomes in different ways to make many different

events. For example, the event represents selecting a $1, $5, or
$10 bill. The event is the collec-
tion of outcomes (Don’t look! Can you name them?): $10 (Hamilton), $100
(Franklin) . The event is
the set of outcomes 

Notice that these outcomes are not equally likely. You’d no doubt be more
surprised (and pleased) to pull out a $100 bill than a $1 bill—it’s not very likely,
though. You probably carry many more $1 than $100 bills, but without informa-
tion about the probability of each outcome, we can’t calculate the probability of
an event.

The probability of the event C (getting a bill worth more than $12) is not 3/7.
There are 7 possible outcomes, and 3 of them exceed $12, but they are not equally
likely. (Remember the probability that your lottery ticket will win rather than lose
still isn’t 1/2.)

The General Addition Rule
Now look at the bill in your hand. There are images of famous buildings in 
the center of the backs of all but two bills in circulation. The $1 bill has the word
ONE in the center, and the $2 bill shows the signing of the Declaration of 
Independence.

5$20, $50, $1006.
C = 5enough money to pay for a $12 meal with one bill66

5
B = 5a bill that does not have a president on it6

A = 5$1, $5, $106

S = 5$1 bill, $2 bill, $5 bill, $10 bill, $20 bill, $50 bill, $100 bill6.

1 Well, technically, the sample space is all the bills in your pocket. You may be quite sure
there isn’t a $100 bill in there, but we don’t know that, so humor us that it’s at least possible
that any legal bill could be there.
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The General Addition Rule 343

What’s the probability of randomly selecting 
or ? We know 

and But is not simply the sum
, because the events A and B are not disjoint. The $5 bill is in both

sets. So what can we do? We’ll need a new probability rule.
As the diagrams show, we can’t use the Addition Rule and add the two prob-

abilities because the events are not disjoint; they overlap. There’s an outcome (the
$5 bill) in the intersection of A and B. The Venn diagram represents the sample
space. Notice that the $2 bill has neither a building nor an odd denomination, so
it sits outside both circles.

The $5 bill plays a crucial role here because it is both odd and has a building
on the reverse. It’s in both A and B, which places it in the intersection of the two
circles. The reason we can’t simply add the probabilities of A and B is that we’d
count the $5 bill twice.

If we did add the two probabilities, we could compensate by subtracting out
the probability of that $5 bill. So,

P(odd number value or building)

This method works in general. We add the probabilities of two events and then
subtract out the probability of their intersection. This approach gives us the
General Addition Rule, which does not require disjoint events:

P (A ´ B) = P (A) + P (B) - P (A ¨ B).

 = P($1, $5) + P($5, $10, $20, $50, $100) - P($5).
 = P(odd number value) + P(building) - P(odd number value and building)

P(A) + P(B)
P(A or B)B = 5$5, $10, $20, $50, $1006.5$1, $56

AA =B = 5a bill with a building on the reverse6numbered value6
A = 5a bill with an odd-

B

A

A and B

Events A and B and their intersection.

$50

$100

$20
$10

$5

$1

$2

A

B

Denominations of bills that are odd (A)
or that have a building on the reverse
side (B). The two sets both include the
$5 bill, and both exclude the $2 bill.

Using the General Addition RuleFOR EXAMPLE

A survey of college students found that 56% live in a campus residence hall, 62% participate in a campus meal program, and 42% do both.

Question: What’s the probability that a randomly selected student either lives or eats on campus?

Let and 

There’s a 76% chance that a randomly selected college student either lives or eats on campus.

= 0.76
= 0.56 + 0.62 - 0.42
= P(L) + P(M) - P(L ¨ M)

P(a student either lives or eats on campus) = P(L ´ M)
M = {student has a campus meal plan}.L = {student lives on campus}

Would you like dessert or coffee? Natural language can be ambiguous. In
this question, is the answer one of the two alternatives, or simply “yes”? Must you
decide between them, or may you have both? That kind of ambiguity can confuse
our probabilities.

Suppose we had been asked a different question: What is the probability that the
bill we draw has either an odd value or a building but not both? Which bills are we
talking about now? The set we’re interested in would be 
We don’t include the $5 bill in the set because it has both characteristics.

Why isn’t this the same answer as before? The problem is that when we say the
word “or,” we usually mean either one or both. We don’t usually mean the exclusive

5$1, $10, $20, $50, $1006.
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344 CHAPTER 15    Probability Rules!

version of “or” as in, “Would you like the steak or the vegetarian entrée?” Ordinarily
when we ask for the probability that A or B occurs, we mean A or B or both. And we
know that probability is The General Addition Rule
subtracts the probability of the outcomes in A and B because we’ve counted those
outcomes twice. But they’re still there.

If we really mean A or B but NOT both, we have to get rid of the outcomes in
So

Now we’ve subtracted twice—once because we don’t 
want to double-count these events and a second time because we really didn’t want
to count them at all.

Confused? Make a picture. It’s almost always easier to think about such situa-
tions by looking at a Venn diagram.

P(A ¨ B)-  2 * P(A ¨ B).
P(A or B but not both) = P(A ´ B) - P(A ¨ B) = P(A) + P(B){A and B}.

P1A2 + P1B2 - P1A and B2.

Using Venn diagramsFOR EXAMPLE

Recap: We return to our survey of college students: 56% live on campus, 62% have a campus meal program, and 42% do both.

Questions: Based on a Venn diagram, what is the probability that a randomly selected student

a) lives off campus and doesn’t have a meal program?
b) lives in a residence hall but doesn’t have a meal program?

Let and In the
Venn diagram, the intersection of the circles is Since 

. Also, . Now,
, leaving for the region outside both 

circles.
Now . . .

P(on campus and no meal program) = P(L ¨ MC) = 0.14
P(off campus and no meal program) = P(LC

¨ MC) = 0.24

1 - 0.76 = 0.240.20 = 0.760.14 + 0.42 +

P(LC
¨ M) = 0.62 - 0.42 = 0.200.14P(L ¨ MC) = 0.56 - 0.42 =

P(L) = 0.56,P(L ¨ M) = 0.42.
meal plan6.M = 5student has a campusL = {student lives on campus}

ML

0.14 0.200.42

0.24

JUST CHECKING
1. Back in Chapter 1 we suggested that you sample some pages of this book at random to see whether they held a

graph or other data display. We actually did just that. We drew a representative sample and found the following:

48% of pages had some kind of data display,

27% of pages had an equation, and

7% of pages had both a data display and an equation.

a) Display these results in a Venn diagram.
b) What is the probability that a randomly selected sample page had neither a data display nor an equation?
c) What is the probability that a randomly selected sample page had a data display but no equation?
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The General Addition Rule 345

Police report that 78% of drivers stopped on suspicion of drunk driving are given a breath test,
36% a blood test, and 22% both tests.

Question: What is the probability that a randomly selected DWI suspect is given
1. a test?
2. a blood test or a breath test, but not both?
3. neither test?

Using the General Addition RuleSTEP-BY-STEP EXAMPLE

Let .
Let .

I know that

So

= 0.08

 P(AC
¨ BC) = 1 - (0.56 + 0.22 + 0.14)

 P(B ¨ AC) = 0.36 - 0.22 = 0.14

P(A ¨ BC) = 0.78 - 0.22 = 0.56

P(A ¨ B) = 0.22
P(B) = 0.36

P(A) = 0.78

B = {suspect is given a blood test}
A = {suspect is given a breath test}Plan Define the events we’re interested in.

There are no conditions to check; the Gen-
eral Addition Rule works for any events!

Plot Make a picture, and use the given
probabilities to find the probability for
each region.

The blue region represents A but not B.
The green intersection region represents
A and B. Note that since and

, the probability of A but
not B must be .

The yellow region is B but not A.

The gray region outside both circles rep-
resents the outcome neither A nor B. All
the probabilities must total 1, so you can
determine the probability of that region
by subtraction.

Now, figure out what you want to know.
The probabilities can come from the dia-
gram or a formula. Sometimes translating
the words to equations is the trickiest step.

0.78 - 0.22 = 0.56
P(A ¨ B) = 0.22

P(A) = 0.78

OR

P(A ´ B) = 0.56 + 0.22 + 0.14 = 0.92

= 0.92
= 0.78 + 0.36 - 0.22

P(A ´ B) = P(A) + P(B) - P(A ¨ B)Mechanics The probability the suspect
is given a test is We can use the
General Addition Rule, or we can add the
probabilities seen in the diagram.

P(A ´ B).

0.56

0.22

0.14

0.08

A B

Question 1. What is the probability that the suspect is given a test?

Conclusion Don’t forget to interpret
your result in context.

92% of all suspects are given a test.
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Goals

Grades Popular Sports Total

Se
x

Boy 117 50 60 227
Girl 130 91 30 251

Total 247 141 90 478

346 CHAPTER 15    Probability Rules!

OR

 = 0.56 + 0.14 = 0.70
 P(A or B but NOT both) = P(A ¨ BC) + P(B ¨ AC)

 = 0.92 - 0.22 = 0.70
 P(A or B but NOT both) = P(A ´ B) - P(A ¨ B)Mechanics We can use the rule, or just

add the appropriate probabilities seen in
the Venn diagram.

Question 2. What is the probability that the suspect gets either a blood test or a breath test
but NOT both?

70% of the suspects get exactly one of the
tests.

Conclusion Interpret your result in 
context.

Question 3. What is the probability that the suspect gets neither test?

OR
P(AC

¨ BC) = 0.08

 = 1 - 0.92 = 0.08
 = 1 - P(A ´ B)

 P(neither test) = 1 - P(either test)Mechanics Getting neither test is the
complement of getting one or the other.
Use the Complement Rule or just notice
that “neither test” is represented by the
region outside both circles.

Only 8% of the suspects get no test.Conclusion Interpret your result in
context.

It Depends . . .
Two psychologists surveyed 478 children in grades 4, 5, and 6 in elementary
schools in Michigan. They stratified their sample, drawing roughly 1/3 from ru-
ral, 1/3 from suburban, and 1/3 from urban schools. Among other questions, they
asked the students whether their primary goal was to get good grades, to be pop-
ular, or to be good at sports. One question of interest was whether boys and girls
at this age had similar goals.

Here’s a contingency table giving counts of the students by their goals and sex:

Table 15.1

The distribution of
goals for boys and
girls.
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It Depends . . . 347

We looked at contingency tables and graphed conditional distributions back in
Chapter 3. The pie charts show the relative frequencies with which boys and girls
named the three goals. It’s only a short step from these relative frequencies to
probabilities.

Let’s focus on this study and make the sample space just the set of these 478
students. If we select a student at random from this study, the probability we select
a girl is just the corresponding relative frequency (since we’re equally likely to
select any of the 478 students). There are 251 girls in the data out of a total of 478,
giving a probability of

The same method works for more complicated events like intersections. For ex-
ample, what’s the probability of selecting a girl whose goal is to be popular? Well,
91 girls named popularity as their goal, so the probability is

The probability of selecting a student whose goal is to excel at sports is

What if we are given the information that the selected student is a girl? Would
that change the probability that the selected student’s goal is sports? You bet it
would! The pie charts show that girls are much less likely to say their goal is to
excel at sports than are boys. When we restrict our focus to girls, we look only at
the girls’ row of the table. Of the 251 girls, only 30 of them said their goal was to
excel at sports.

We write the probability that a selected student wants to excel at sports given
that we have selected a girl as

For boys, we look at the conditional distribution of goals given “boy” shown 
in the top row of the table. There, of the 227 boys, 60 said their goal was to ex-
cel at sports. So, , more than twice the girls’
probability.

In general, when we want the probability of an event from a conditional distri-
bution, we write and pronounce it “the probability of B given A.” A prob-
ability that takes into account a given condition such as this is called a conditional
probability.

Let’s look at what we did. We worked with the counts, but we could work
with the probabilities just as well. There were 30 students who both were girls
and had sports as their goal, and there are 251 girls. So we found the probability
to be 30/251. To find the probability of the event B given the event A, we restrict
our attention to the outcomes in A. We then find in what fraction of those out-
comes B also occurred. Formally, we write:

Thinking this through, we can see that it’s just what we’ve been doing, but now
with probabilities rather than with counts. Look back at the girls for whom sports
was the goal. How did we calculate 

The rule says to use probabilities. It says to find The result is
the same whether we use counts or probabilities because the total number in the
sample cancels out:

=

30
251

. 
P(sports ¨ girl)

P(girl)
=

30>478

251>478

P(A ¨ B)>P(A).
P(sports ƒ  girl)?

P1B ƒ  A2 =

P1A ¨ B2

P1A2
.

P1B ƒ  A2

P (sports ƒ  boy) = 60>227 = 0.264

P (sports ƒ  girl) = 30>251 = 0.120

P (sports) = 90>478 = 0.188

P (girl ¨ popular) = 91>478 = 0.190

P (girl) = 251>478 = 0.525

Activity: Birthweights and
Smoking. Does smoking increase
the chance of having a baby with
low birth weight?

Grades
Popular
Sports

Boys

Girls

FIGURE 15.1
The distribution of goals for boys
and girls.

NOTATION ALERT:

P(B A) is the conditional
probability of B given A.

ƒ
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To use the formula for conditional probability, we’re supposed to insist on one re-
striction. The formula doesn’t work if P(A) is 0. After all, we can’t be “given” the
fact that A was true if the probability of A is 0!

Let’s take our rule out for a spin. What’s the probability that we have se-
lected a girl given that the selected student’s goal is popularity? Applying the
rule, we get

 =

91>478

141>478
=

91
141

.

 P(girl ƒ  popular) =

P(girl ¨ popular)

P(popular)

Finding a conditional probabilityFOR EXAMPLE

Recap: Our survey found that 56% of college students live on campus, 62% have a campus meal program, and 42% do both.

Question: While dining in a campus facility open only to students with meal plans, you meet someone interesting. What is the probability that your
new acquaintance lives on campus?

Let and .

There’s a probability of about 0.677 that a student with a meal plan lives on campus.

 L 0.677

 =

0.42
0.62

 =

P(L ¨ M)
P(M)

 P(student lives on campus given that the student has a meal plan) = P(L ƒ  M)
M = {student has a campus meal plan}L = {student lives on campus}

The General Multiplication Rule
Remember the Multiplication Rule for the probability of A and B? It said

Now we can write a more general rule that doesn’t require independence. In
fact, we’ve already written it down. We just need to rearrange the equation 
a bit.

The equation in the definition for conditional probability contains the proba-
bility of A and B. Rewriting the equation gives

This is a General Multiplication Rule for compound events that does not require
the events to be independent. Better than that, it even makes sense. The probabil-
ity that two events, A and B, both occur is the probability that event A occurs mul-
tiplied by the probability that event B also occurs—that is, by the probability that
event B occurs given that event A occurs.

Of course, there’s nothing special about which set we call A and which one
we call B. We should be able to state this the other way around. And indeed we
can. It is equally true that

P(A ¨ B) = P(B) * P(A ƒ  B).

P(A ¨ B) = P(A) * P(B ƒ  A).

P(A ¨ B) = P(A) * P(B) when A and B are independent.

Activity: The General
Multiplication Rule. The best
way to understand the General
Multiplication Rule is with an
experiment.

Activity: Conditional
Probability. Simulation is great
for seeing conditional
probabilities at work.
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Independence
Let’s return to the question of just what it means for events to be independent.
We’ve said informally that what we mean by independence is that the outcome of
one event does not influence the probability of the other. With our new notation
for conditional probabilities, we can write a formal definition: Events A and B are
independent whenever

Now we can see that the Multiplication Rule for independent events we saw in
Chapter 14 is just a special case of the General Multiplication Rule. The general
rule says

whether the events are independent or not. But when events A and B are inde-
pendent, we can write for and we get back our simple rule:

Sometimes people use this statement as the definition of independent events, but
we find the other definition more intuitive. Either way, the idea is that for inde-
pendent events, the probability of one doesn’t change when the other occurs.

Is the probability of having good grades as a goal independent of the sex of
the responding student? Looks like it might be. We need to check whether

To two decimal place accuracy, it looks like we can consider choosing good grades
as a goal to be independent of sex.

On the other hand, is 90/478, or about 18.8%, but is
Because these probabilities aren’t equal, we can be pretty sure

that choosing success in sports as a goal is not independent of the student’s sex.
60>227 = 26.4%.

P (sports ƒ  boy)P (sports)

130
251

= 0.52 � 247
478

= 0.52

P(grades ƒ  girl) = P(grades)

P (A ¨ B) = P(A) * P(B).

P (B ƒ  A)P(B)

P(A ¨ B) = P(A) * P(B ƒ  A).

P (B ƒ  A) = P(B).

If we had to pick one idea in
this chapter that you should
understand and remember,
it’s the definition and
meaning of independence.
We’ll need this idea in every
one of the chapters that
follow.

Activity: Independence.
Are Smoking and Low Birthweight
independent?

In earlier chapters we said
informally that two events
were independent if learning
that one occurred didn’t
change what you thought
about the other occurring.
Now we can be more 
formal. Events A and B are
independent if (and only if)
the probability of A is the
same when we are given that
B has occurred.That is,

Although sometimes
your intuition is enough, now
that we have the formal rule,
use it whenever you can.

P(A) = P(A ƒ  B).

Checking for independenceFOR EXAMPLE

Recap: Our survey told us that 56% of college students live on campus, 62% have a campus meal program, and 42% do both.

Question: Are living on campus and having a meal plan independent? Are they disjoint?

Let and If these events are independent, then
knowing that a student lives on campus doesn’t affect the probability that he or she has a meal plan. I’ll check to see
if

Because , the events are not independent; students who live on campus are more likely to have meal
plans. Living on campus and having a meal plan are not disjoint either; in fact, 42% of college students do both.

0.75 Z 0.62

 = 0.75, but P(M) = 0.62.

 =

0.42
0.56

 P(M ƒ  L) =

P(L ¨ M)
P(L)

P(M ƒ  L) = P(M):

M = {student has a campus meal plan}.L = {student lives on campus}
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Independent � Disjoint
Are disjoint events independent? These concepts seem to have similar ideas of
separation and distinctness about them, but in fact disjoint events cannot be inde-
pendent.2 Let’s see why. Consider the two disjoint events {you get an A in this
course} and {you get a B in this course}. They’re disjoint because they have no out-
comes in common. Suppose you learn that you did get an A in the course. Now
what is the probability that you got a B? You can’t get both grades, so it must be 0.

Think about what that means. Knowing that the first event (getting an A) oc-
curred changed your probability for the second event (down to 0). So these events
aren’t independent.

Mutually exclusive events can’t be independent. They have no outcomes in
common, so if one occurs, the other doesn’t. A common error is to treat disjoint
events as if they were independent and apply the Multiplication Rule for inde-
pendent events. Don’t make that mistake.

Activity: Hot Hand
Simulation. Can you tell the
difference between real and
simulated sequences of basketball
shot hits and misses?

Video: Is There a Hot
Hand in Basketball? Most
coaches and fans believe that
basketball players sometimes get
“hot” and make more of their
shots. What do the conditional
probabilities say?

A

B

FIGURE 15.2
Because these events are mutually ex-
clusive, learning that A happened tells
us that B didn’t. The probability of B
has changed from whatever it was to
zero. So the disjoint events A and B
are not independent.

JUST CHECKING
2. The American Association for Public Opinion Research (AAPOR) is an association of about 1600 individuals who

share an interest in public opinion and survey research. They report that typically as few as 10% of random phone
calls result in a completed interview. Reasons are varied, but some of the most common include no answer, refusal
to cooperate, and failure to complete the call.

Which of the following events are independent, which are disjoint, and which are neither independent nor
disjoint?
a) A = Your telephone number is randomly selected. B = You’re not at home at dinnertime when they call.
b) A = As a selected subject, you complete the interview. B = As a selected subject, you refuse to cooperate.
c) A = You are not at home when they call at 11 a.m. B = You are employed full-time.

Depending on Independence
It’s much easier to think about independent events than to deal with conditional
probabilities. It seems that most people’s natural intuition for probabilities breaks
down when it comes to conditional probabilities. Someone may estimate the
probability of a compound event by multiplying the probabilities of its compo-
nent events together without asking seriously whether those probabilities are 
independent.

For example, experts have assured us that the probability of a major commer-
cial nuclear plant failure is so small that we should not expect such a failure to oc-
cur even in a span of hundreds of years. After only a few decades of commercial
nuclear power, however, the world has seen two failures (Chernobyl and Three
Mile Island). How could the estimates have been so wrong?

2 Well, technically two disjoint events can be independent, but only if the probability of one
of the events is 0. For practical purposes, though, we can ignore this case. After all, as stat-
isticians we don’t anticipate having data about things that never happen.
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One simple part of the failure calculation is to test a particular valve and
determine that valves such as this one fail only once in, say, 100 years of normal
use. For a coolant failure to occur, several valves must fail. So we need the
compound probability, P(valve 1 fails and valve 2 fails and . . .). A simple risk as-
sessment might multiply the small probability of one valve failure together as
many times as needed.

But if the valves all came from the same manufacturer, a flaw in one might be
found in the others. And maybe when the first fails, it puts additional pressure on
the next one in line. In either case, the events aren’t independent and so we can’t
simply multiply the probabilities together.

Whenever you see probabilities multiplied together, stop and ask whether
you think they are really independent.

Tables and Conditional Probability
One of the easiest ways to think about conditional probabilities is with contin-
gency tables. We did that earlier in the chapter when we began our discussion.
But sometimes we’re given probabilities without a table. You can often construct
a simple table to correspond to the probabilities.

For instance, in the drunk driving example, we were told that 78% of sus-
pect drivers get a breath test, 36% a blood test, and 22% both. That’s enough
information. Translating percentages to probabilities, what we know looks 
like this:

Notice that the 0.78 and 0.36 are marginal probabilities and so they go into
the margins. The 0.22 is the probability of getting both tests—a breath test and
a blood test—so that’s a joint probability. Those belong in the interior of the
table.

Because the cells of the table show disjoint events, the probabilities always
add to the marginal totals going across rows or down columns. So, filling in the
rest of the table is quick:

Compare this with the Venn diagram. Notice which entries in the table 
match up with the sets in this diagram. Whether a Venn diagram or a table is better
to use will depend on what you are given and the questions you’re being asked.
Try both.

0.56

0.22

0.14

0.08

A B

Breath Test

B
lo

o
d
 T

es
t

Yes No Total

Yes 0.22 0.36
No

Total 0.78 1.00

Breath Test

B
lo

o
d
 T

es
t

Yes No Total

Yes 0.22 0.14 0.36
No 0.56 0.08 0.64

Total 0.78 0.22 1.00
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Let’s take another look at the drunk driving situation. Police report that 78% of drivers are given a
breath test, 36% a blood test, and 22% both tests.

Questions: 1. Are giving a DWI suspect a blood test and a breath test mutually exclusive?
2. Are giving the two tests independent?

Are the Events Disjoint? Independent?STEP-BY-STEP EXAMPLE

Let 
Let .

I know that

 P(A ¨ B) = 0.22
 P(B) = 0.36
 P(A) = 0.78

B = {suspect is given a blood test}
A = {suspect is given a breath test}Plan Define the events we’re interested in.

State the given probabilities.

Since some suspects are
given both tests, . The events
are not mutually exclusive.

P1A ¨ B) Z O
P1A ¨ B) = 0.22.Mechanics Disjoint events cannot both

happen at the same time, so check to see
if P1A ¨ B2 = 0.

Question 1. Are giving a DWI suspect a blood test and a breath test mutually exclusive?

22% of all suspects get both tests, so a breath
test and a blood test are not disjoint events.

Conclusion State your conclusion in
context.

Plan Make a table.

Question 2. Are the two tests independent?

 P(B ƒ  A) Z P(B)
 P(B) = 0.36

 P(B ƒ  A) =

P(A ¨ B)
P(A)

=

0.22
0.78

L 0.28
Mechanics Does getting a breath test
change the probability of getting a blood
test? That is, does ?

Because the two probabilities are not the
same, the events are not independent.

P1B ƒ  A2 = P1B2

Breath Test

Bl
oo

d 
Te

st

Yes No Total

Yes 0.22 0.14 0.36
No 0.56 0.08 0.64
Total 0.78 0.22 1.00
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Drawing Without Replacement
Room draw is a process for assigning dormitory rooms to students who live on
campus. Sometimes, when students have equal priority, they are randomly as-
signed to the currently available dorm rooms. When it’s time for you and your
friend to draw, there are 12 rooms left. Three are in Gold Hall, a very desirable
dorm with spacious wood-paneled rooms. Four are in Silver Hall, centrally lo-
cated but not quite as desirable. And five are in Wood Hall, a new dorm with
cramped rooms, located half a mile from the center of campus on the edge of
the woods.

You get to draw first, and then your friend will draw. Naturally, you would
both like to score rooms in Gold. What are your chances? In particular, what’s the
chance that you both can get rooms in Gold?

When you go first, the chance that you will draw one of the Gold rooms is
3/12. Suppose you do. Now, with you clutching your prized room assignment,
what chance does your friend have? At this point there are only 11 rooms left and
just 2 left in Gold, so your friend’s chance is now 2/11.

Using our notation, we write

The reason the denominator changes is that we draw these rooms without replace-
ment. That is, once one is drawn, it doesn’t go back into the pool.

We often sample without replacement. When we draw from a very large pop-
ulation, the change in the denominator is too small to worry about. But when
there’s a small population to draw from, as in this case, we need to take note and
adjust the probabilities.

P1friend draws Gold ƒ  you draw Gold2 = 2>11.

Overall, 36% of the drivers get blood tests, but
only 28% of those who get a breath test do.
Since suspects who get a breath test are less
likely to have a blood test, the two events are
not independent.

Conclusion Interpret your results in
context.

JUST CHECKING
3. Remember our sample of pages in this book from the earlier Just Checking . . . ?

48% of pages had a data display.

27% of pages had an equation, and

7% of pages had both a data display and an equation.

a) Make a contingency table for the variables display and equation.
b) What is the probability that a randomly selected sample page with an equation also had a data display?
c) Are having an equation and having a data display disjoint events?
d) Are having an equation and having a data display independent events?
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What are the chances that both of you will luck out? Well, now we’ve calcu-
lated the two probabilities we need for the General Multiplication Rule, so we
can write:

In this instance, it doesn’t matter who went first, or even if the rooms were drawn
simultaneously. Even if the room draw was accomplished by shuffling cards con-
taining the names of the dormitories and then dealing them out to 12 applicants
(rather than by each student drawing a room in turn), we can still think of the cal-
culation as having taken place in two steps:

 = 3>12 * 2>11 = 1>22 = 0.045
 = P(you draw Gold) * P(friend draws Gold ƒ  you draw Gold)
 P(you draw Gold ¨ friend draws Gold)

3/12 2/11
Gold Gold⎟ Gold

Diagramming conditional probabilities leads to a more general way of help-
ing us think with pictures—one that works for calculating conditional probabili-
ties even when they involve different variables.

Tree Diagrams
For men, binge drinking is defined as having five or more drinks in a row, and for
women as having four or more drinks in a row. (The difference is because of the
average difference in weight.) According to a study by the Harvard School of Pub-
lic Health (H. Wechsler, G. W. Dowdall, A. Davenport, and W. DeJong, “Binge
Drinking on Campus: Results of a National Study”), 44% of college students en-
gage in binge drinking, 37% drink moderately, and 19% abstain entirely. Another
study, published in the American Journal of Health Behavior, finds that among binge
drinkers aged 21 to 34, 17% have been involved in an alcohol-related automobile
accident, while among non-bingers of the same age, only 9% have been involved
in such accidents.

What’s the probability that a randomly selected college student will be a
binge drinker who has had an alcohol-related car accident?

To start, we see that the probability of selecting a binge drinker is about 44%.
To find the probability of selecting someone who is both a binge drinker and a
driver with an alcohol-related accident, we would need to pull out the General
Multiplication Rule and multiply the probability of one of the events by the con-
ditional probability of the other given the first.

Or we could make a picture. Which would you prefer?
We thought so.
The kind of picture that helps us think through this kind of reasoning is

called a tree diagram, because it shows sequences of events, like those we
had in room draw, as paths that look like branches of a tree. It is a good idea
to make a tree diagram almost any time you plan to use the General Multipli-
cation Rule. The number of different paths we can take can get large, so
we usually draw the tree starting from the left and growing vine-like across
the page, although sometimes you’ll see them drawn from the bottom up or
top down.

“Why,” said the Dodo, “the best
way to explain it is to do it.”

—Lewis Carroll
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Notice that we cover all possible outcomes with the branches. The probabilities
add up to one. But we’re also interested in car accidents. The probability of having
an alcohol-related accident depends on one’s drinking behavior. Because the proba-
bilities are conditional, we draw the alternatives separately on each branch of the tree:

Binge
.44

.19
Abstain

Moderate
.37

FIGURE 15.3
We can diagram the three outcomes of
drinking and indicate their respective
probabilities with a simple tree diagram.

B
in

ge

.44

.17

.83

A
bstain

.19

Moderate
.37

None

Acci
den

t Binge 
and
Accident

Binge 
and
None

Moderate 
and
Accident

Moderate 
and
None

Abstain 
and
Accident

Abstain
and
None

.09

.91None

Acci
den

t

0

1.0None

Acci
den

t

FIGURE 15.4
Extending the tree diagram, we can show
both drinking and accident outcomes.
The accident probabilities are conditional
on the drinking outcomes, and they
change depending on which branch we
follow. Because we are concerned only
with alcohol-related accidents, the condi-
tional probability P(accident abstinence)
must be 0.

ƒ

The first branch of our tree separates students according to their drinking
habits. We label each branch of the tree with a possible outcome and its corre-
sponding probability.

On each of the second set of branches, we write the possible outcomes associated
with having an alcohol-related car accident (having an accident or not) and the as-
sociated probability. These probabilities are different because they are conditional de-
pending on the student’s drinking behavior. (It shouldn’t be too surprising that
those who binge drink have a higher probability of alcohol-related accidents.) The
probabilities add up to one, because given the outcome on the first branch, these
outcomes cover all the possibilities. Looking back at the General Multiplication
Rule, we can see how the tree depicts the calculation. To find the probability that a
randomly selected student will be a binge drinker who has had an alcohol-related
car accident, we follow the top branches. The probability of selecting a binger is
0.44. The conditional probability of an accident given binge drinking is 0.17. The
General Multiplication Rule tells us that to find the joint probability of being a binge
drinker and having an accident, we multiply these two probabilities together:

 = 0.44 * 0.17 = 0.075
 P(binge ¨ accident) = P(binge) * P(accident ƒ  binge)
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And we can do the same for each combination of outcomes:

Bin
ge

.44

.17

.83

A
bstain

.19

Moderate
.37

None

Acci
dent

None

Acci
dent

None

Acci
dent

.09

.91

0

1.0

Binge 
and 
Accident
Binge 
and 
None

Moderate 
and 
Accident

Moderate 
and 
None

Abstain 
and 
Accident

Abstain 
and 
None

0.075

0.365

0.033

0.337

0

0.190

FIGURE 15.5
We can find the probabilities of compound
events by multiplying the probabilities along
the branch of the tree that leads to the event,
just the way the General Multiplication Rule
specifies.

The probability of abstaining and having
an alcohol-related accident is, of course, zero.

All the outcomes at the far right are disjoint because at each branch of the tree
we chose between disjoint alternatives. And they are all the possibilities, so the
probabilities on the far right must add up to one. Always check!

Because the final outcomes are disjoint, we can add up their probabilities to get
probabilities for compound events. For example, what’s the probability that a se-
lected student has had an alcohol-related car accident? We simply find all the out-
comes on the far right in which an accident has happened. There are three and we
can add their probabilities: —almost an 11% chance.

Reversing the Conditioning
If we know a student has had an alcohol-related accident, what’s the probability
that the student is a binge drinker? That’s an interesting question, but we can’t
just read it from the tree. The tree gives us but we want

—conditioning in the other direction. The two probabilities are
definitely not the same. We have reversed the conditioning.

We may not have the conditional probability we want, but we do know every-
thing we need to know to find it. To find a conditional probability, we need the
probability that both events happen divided by the probability that the given
event occurs. We have already found the probability of an alcohol-related acci-
dent: .

The joint probability that a student is both a binge drinker and someone
who’s had an alcohol-related accident is found at the top branch: 0.075. We’ve re-
stricted the Who of the problem to the students with alcohol-related accidents, so
we divide the two to find the conditional probability:

The chance that a student who has an alcohol-related car accident is a binge
drinker is more than 69%! As we said, reversing the conditioning is rarely intuitive,
but tree diagrams help us keep track of the calculation when there aren’t too many
alternatives to consider.

 =

0.075
0.108

= 0.694

 P(binge ƒ  accident) =

P(binge ¨ accident)

P(accident)

0.075 + 0.033 + 0 = 0.108

P(binge  ƒ   accident)
P(accident ƒ  binge),

0.075 + 0.033 + 0 = 0.108
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When the authors were in college, there were only three requirements for graduation that were
the same for all students: You had to be able to tread water for 2 minutes, you had to learn a for-
eign language, and you had to be free of tuberculosis. For the last requirement, all freshmen had
to take a TB screening test that consisted of a nurse jabbing what looked like a corncob holder into
your forearm.You were then expected to report back in 48 hours to have it checked. If you were
healthy and TB-free, your arm was supposed to look as though you’d never had the test.

Sometime during the 48 hours, one of us had a reaction. When he finally saw the nurse, his
arm was about 50% bigger than normal and a very unhealthy red. Did he have TB? The nurse had
said that the test was about 99% effective, so it seemed that the chances must be pretty high that
he had TB. How high do you think the chances were? Go ahead and guess. Guess low.

We’ll call TB the event of actually having TB and + the event of testing positive. To start a tree,
we need to know P(TB), the probability of having TB.3 We also need to know the conditional proba-
bilities and . Diagnostic tests can make two kinds of errors. They can give a
positive result for a healthy person (a false positive) or a negative result for a sick person (a false neg-
ative). Being 99% accurate usually means a false-positive rate of 1%. That is, someone who doesn’t
have the disease has a 1% chance of testing positive anyway. We can write .

Since a false negative is more serious (because a sick person might not get treatment), tests are
usually constructed to have a lower false-negative rate. We don’t know exactly, but let’s assume a
0.1% false-negative rate. So only 0.1% of sick people test negative. We can write .P1� ƒ  TB2 = 0.001

P1� ƒ  TBC2 = 0.01

P1� ƒ  TBC2P1� ƒ  TB2

Reversing the ConditioningSTEP-BY-STEP EXAMPLE

I know that and 
. I also know that
.

I’m interested in the probability that the author
had TB given that he tested positive: .P(TB ƒ �)

P(TB) = 0.00005
P(� ƒ  TB) = 0.001

P(� ƒ  TBC) = 0.01

 � = {testing negative}
 � = {testing positive} and

 Let TB = {having TB} and TBC
= {no TB}Plan Define the events we’re interested

in and their probabilities.

Figure out what you want to know in
terms of the events. Use the notation of
conditional probability to write the event
whose probability you want to find.

Plot Draw the tree diagram. When prob-
abilities are very small like these are, be
careful to keep all the significant digits.

To finish the tree we need , 
, and . We can find

each of these from the Complement Rule:

 = 1 - 0.01 = 0.999
 P(� ƒ TB) = 1 - P(� ƒ TB)

 = 1 - 0.01 = 0.99 and
 P(� ƒ  TBC) = 1 - P(� ƒ  TBC)

 P(TBC) = 1 - P(TB) = 0.99995

P(� ƒ  TB)P(� ƒ  TBC)
P(TBC)

0.999

0.001

.00005

.99995

0.01

0.99

0.00004995 
TB and 
test +

TB but 
test – 0.00000005 

0.0099995 
no TB 
but test +

no TB 
and test – 0.9899505 

+

–

+

–

no TB

TB

3 This isn’t given, so we looked it up. Although TB is a matter of serious concern to public
health officials, it is a fairly uncommon disease, with an incidence of about 5 cases per
100,000 in the United States (see http://www.cdc.gov/tb/default.htm).
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Bayes’s Rule
When we have but want the reverse probability we need to find

and A tree is often a convenient way of finding these probabili-
ties. It can work even when we have more than two possible events, as we saw
in the binge-drinking example. Instead of using the tree, we could write the cal-
culation algebraically, showing exactly how we found the quantities that we
needed: P(A B) and P(A). The result is a formula known as Bayes’s Rule, af-
ter the Reverend Thomas Bayes (1702?–1761), who was credited with the rule
after his death, when he could no longer defend himself. Bayes’s Rule is quite
important in Statistics and is the foundation of an approach to Statistical analy-
sis known as Bayesian Statistics. Although the simple rule deals with two alter-
native outcomes, the rule can be extended to the situation in which there are
more than two branches to the first split of the tree. The principle remains the
same (although the math gets more difficult). Bayes’s Rule is just a formula4 for
reversing the probability from the conditional probability that you’re originally
given, the same feat we accomplished with our tree diagram.

¨

P(A).P(A ¨ B)
P(B ƒ  A),P(A ƒ  B)

 = 0.00497

 =

0.00004995
0.01004945

 P(TB ƒ �) =

P(TB ¨ �)
P(�)

 = 0.01004945
 P = 0.00004995 + 0.0099995

 P(�) = P(TB ¨ �) + P(TBc
¨ �)

0.0099995 + 0.98995050 = 1)
(Check: 0.00004995 + 0.00000005 +Mechanics Multiply along the branches

to find the probabilities of the four possi-
ble outcomes. Check your work by seeing
if they total 1.

Add up the probabilities corresponding
to the condition of interest—in this case,
testing positive. We can add because the
tree shows disjoint events.

Divide the probability of both events
occuring (here, having TB and a positive
test) by the probability of satisfying the
condition (testing positive).

The chance of having TB after you test positive
is less than 0.5%.

Conclusion Interpret your result in 
context.

When we reverse the order of conditioning, we change the Who we are concerned with. With events of
low probability, the result can be surprising.That’s the reason patients who test positive for HIV, for exam-
ple, are always told to seek medical counseling.They may have only a small chance of actually being
infected.That’s why global drug or disease testing can have unexpected consequences if people interpret
testing positive as being positive.

4 Bayes’s Rule for two events says that . 

Masochists may wish to try it with the TB testing probabilities. (It’s easier to just draw the 
tree, isn’t it?)

P(B ƒ  A) =

P(A ƒ  B)P(B)

P(A ƒ  B)P(B) + P(A ƒ  BC)P(BC)

The Reverend Thomas Bayes is cred-
ited posthumously with the rule that is
the foundation of Bayesian Statistics.
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Reversing the conditioningFOR EXAMPLE

A recent Maryland highway safety study found that in 77% of all accidents the driver was wearing a seatbelt. Accident reports indicated that 92% of
those drivers escaped serious injury (defined as hospitalization or death), but only 63% of the non-belted drivers were so fortunate.

Question: What’s the probability that a driver who was seriously injured wasn’t wearing a seatbelt?

Let B = the driver was wearing a seatbelt, and NB = no belt.
Let I = serious injury or death, and OK = not seriously injured.
I know , so .
Also, , so 
and , so P(I ƒ  NB) = 0.37P(OK ƒ  B) = 0.63

P(I ƒ  B) = 0.08P(OK ƒ  B) = 0.92
P(NB) = 1 - 0.77 = 0.23P(B) = 0.77

B

0.08

0.92

0.37

0.63

0.77

0.23

NB

I

OK

B and I

B and OK

NB and I

NB and OK

I

OK

(0.77)(0.88) = 0.0616

0.7084

0.0851

0.1449

Accident

Even though only 23% of drivers weren’t wearing seatbelts, they accounted for 58% of all the deaths and serious injuries.

Just some advice from your friends, the authors: Please buckle up! (We want you to finish this course.)

P(NB ƒ  I) =

P(NB and I)
P(I)

=

0.0851
0.0616 + 0.0851

= 0.58

WHAT CAN GO WRONG?
u Don’t use a simple probability rule where a general rule is appropriate. Don’t assume inde-

pendence without reason to believe it. Don’t assume that outcomes are disjoint with-
out checking that they are. Remember that the general rules always apply, even
when outcomes are in fact independent or disjoint.

u Don’t find probabilities for samples drawn without replacement as if they had been drawn with
replacement. Remember to adjust the denominator of your probabilities. This warn-
ing applies only when we draw from small populations or draw a large fraction of a
finite population. When the population is very large relative to the sample size, the
adjustments make very little difference, and we ignore them.

u Don’t reverse conditioning naively. As we have seen, the probability of A given B may
not, and, in general does not, resemble the probability of B given A. The true proba-
bility may be counterintuitive.

u Don’t confuse “disjoint” with “independent.” Disjoint events cannot happen at the same
time. When one happens, you know the other did not, so . Independent
events must be able to happen at the same time. When one happens, you know it
has no effect on the other, so .P(B ƒ  A) = P(B)

P(B ƒ  A) = 0
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CONNECTIONS
This chapter shows the unintuitive side of probability. If you’ve been thinking, “My mind doesn’t
work this way,” you’re probably right. Humans don’t seem to find conditional and compound
probabilities natural and often have trouble with them. Even statisticians make mistakes with
conditional probability.

Our central connection is to the guiding principle that Statistics is about understanding the
world. The events discussed in this chapter are close to the kinds of real-world situations in
which understanding probabilities matters. The methods and concepts of this chapter are the
tools you need to understand the part of the real world that deals with the outcomes of complex,
uncertain events.

WHAT HAVE WE LEARNED?

The last chapter’s basic rules of probability are important, but they work only in special cases—
when events are disjoint or independent. Now we’ve learned the more versatile General Addition
Rule and General Multiplication Rule. We’ve also learned about conditional probabilities, and seen
that reversing the conditioning can give surprising results.

We’ve learned the value of Venn diagrams, tables, and tree diagrams to help organize our
thinking about probabilities.

Most important, we’ve learned to think clearly about independence. We’ve seen how to use condi-
tional probability to determine whether two events are independent and to work with events that are not
independent. A sound understanding of independence will be important throughout the rest of this book.

Terms
General Addition Rule 343. For any two events, A and B, the probability of A or B is

Conditional probability 347.

is read “the probability of B given A.”

General Multiplication Rule 348. For any two events, A and B, the probability of A and B is

Independence (used formally) 349. Events A and B are independent when .

Tree diagram 354. A display of conditional events or probabilities that is helpful in thinking through conditioning.

Skills
u Understand the concept of conditional probability as redefining the Who of concern, according

to the information about the event that is given.

u Understand the concept of independence.

u Know how and when to apply the General Addition Rule.

u Know how to find probabilities for compound events as fractions of counts of occurrences in a
two-way table.

P(B ƒ  A) = P(B)

P(A ¨ B) = P(A) * P(B ƒ  A).

P(B ƒ  A)

P(B ƒ  A) =

P(A ¨ B)

P(A)

P(A ´ B) = P(A) + P(B) - P(A ¨ B).
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Birth Order

1 or only 2 or more Total

Co
lle

ge

Arts & Sciences 34 23 57
Agriculture 52 41 93
Human Ecology 15 28 43
Other 12 18 30

Total 113 110 223

Exercises 361

u Know how and when to apply the General Multiplication Rule.

u Know how to make and use a tree diagram to understand conditional probabilities and reverse
conditioning.

u Be able to make a clear statement about a conditional probability that makes clear how the con-
dition affects the probability.

u Avoid making statements that assume independence of events when there is no clear evidence
that they are in fact independent.

EXERCISES

1. Homes. Real estate ads suggest that 64% of homes for
sale have garages, 21% have swimming pools, and 17%
have both features. What is the probability that a home
for sale has
a) a pool or a garage?
b) neither a pool nor a garage?
c) a pool but no garage?

2. Travel. Suppose the probability that a U.S. resident has
traveled to Canada is 0.18, to Mexico is 0.09, and to both
countries is 0.04. What’s the probability that an American
chosen at random has
a) traveled to Canada but not Mexico?
b) traveled to either Canada or Mexico?
c) not traveled to either country?

3. Amenities. A check of dorm rooms on a large college
campus revealed that 38% had refrigerators, 52% had
TVs, and 21% had both a TV and a refrigerator. What’s
the probability that a randomly selected dorm room has
a) a TV but no refrigerator?
b) a TV or a refrigerator, but not both?
c) neither a TV nor a refrigerator?

4. Workers. Employment data at a large company reveal
that 72% of the workers are married, that 44% are college
graduates, and that half of the college grads are married.
What’s the probability that a randomly chosen worker
a) is neither married nor a college graduate?
b) is married but not a college graduate?
c) is married or a college graduate?

5. Global survey. The marketing research organization
GfK Custom Research North America conducts a yearly
survey on consumer attitudes worldwide. They collect
demographic information on the roughly 1500 respon-
dents from each country that they survey. Here is a
table showing the number of people with various levels
of education in five countries:

Educational Level by Country

Post-
graduate College

Some 
high 

school

Primary 
or 

less
No 

answer Total
China 7 315 671 506 3 1502
France 69 388 766 309 7 1539
India 161 514 622 227 11 1535
U.K. 58 207 1240 32 20 1557
USA 84 486 896 87 4 1557
Total 379 1910 4195 1161 45 7690

If we select someone at random from this survey,
a) what is the probability that the person is from the

United States?
b) what is the probability that the person completed his

or her education before college?
c) what is the probability that the person is from France

or did some post-graduate study?
d) what is the probability that the person is from France

and finished only primary school or less?

6. Birth order. A survey of students in a large Intro-
ductory Statistics class asked about their birth order 
(1 = oldest or only child) and which college of the uni-
versity they were enrolled in. Here are the results:

BOCK_C15_0321570448 pp3.qxd  12/1/08  6:45 PM  Page 361




