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In November 2005 the Harris Poll asked 889 U.S. adults, “Do you believe in
ghosts?” 40% said they did. At almost the same time, CBS News polled 808
U.S. adults and asked the same question. 48% of their respondents pro-
fessed a belief in ghosts. Why the difference? This seems like a simple

enough question. Should we be surprised to find that we could get proportions
this different from properly selected random samples drawn from the same pop-
ulation? You’re probably used to seeing that observations vary, but how much
variability among polls should we expect to see?

Why do sample proportions vary at all? How can surveys conducted at essen-
tially the same time by organizations asking the same questions get different re-
sults? The answer is at the heart of Statistics. The proportions vary from sample
to sample because the samples are composed of different people.

It’s actually pretty easy to predict how much a proportion will vary under cir-
cumstances like this. Understanding the variability of our estimates will let us ac-
tually use that variability to better understand the world.

The Central Limit Theorem 
for Sample Proportions

We’ve talked about Think, Show, and Tell. Now we have to add Imagine. In order
to understand the CBS poll, we want to imagine the results from all the random
samples of size 808 that CBS News didn’t take. What would the histogram of all
the sample proportions look like?

For people’s belief in ghosts, where do you expect the center of that histogram
to be? Of course, we don’t know the answer to that (and probably never will). But
we know that it will be at the true proportion in the population, and we can call
that p. (See the Notation Alert.) For the sake of discussion here, let’s suppose that
45% of all American adults believe in ghosts, so we’ll use .

How about the shape of the histogram? We don’t have to just imagine. We can
simulate a bunch of random samples that we didn’t really draw. Here’s a histogram
of the proportions saying they believe in ghosts for 2000 simulated independent
samples of 808 adults when the true proportion is .p = 0.45

p = 0.45

WHO U.S. adults

WHAT Belief in ghosts

WHEN November 2005

WHERE United States

WHY Public attitudes

We see only the sample that
we actually drew, but by
simulating or modeling, we
can imagine what we might
have seen had we drawn
other possible random
samples.
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FIGURE 18.1
A histogram of sample
proportions for 2000 sim-
ulated samples of 808
adults drawn from a popu-
lation with . The
sample proportions vary,
but their distribution is
centered at the true pro-
portion, p.

p = 0.45

1 A word of caution. Until now we’ve been plotting the distribution of the sample, a display
of the actual data that were collected in that one sample. But now we’ve plotted the
sampling distribution; a display of summary statistics ( ’s, for example) for many different
samples. “Sample distribution” and “sampling distribution” sound a lot alike, but they re-
fer to very different things. (Sorry about that—we didn’t make up the terms. It’s just the
way it is.) And the distinction is critical. Whenever you read or write something about one
of these, think very carefully about what the words signify.
2 Well, the fact that we spent most of Chapter 6 on the Normal model might have been a hint.

pN

It should be no surprise that we don’t get the same proportion for each sam-
ple we draw, even though the underlying true value is the same for the popula-
tion. Each comes from a different simulated sample. The histogram above is a
simulation of what we’d get if we could see all the proportions from all possible sam-
ples. That distribution has a special name. It is called the sampling distribution of
the proportions.1

Does it surprise you that the histogram is unimodal? Symmetric? That it is
centered at p? You probably don’t find any of this shocking. Does the shape re-
mind you of any model that we’ve discussed? It’s an amazing and fortunate fact
that a Normal model is just the right one for the histogram of sample proportions.

As we’ll see in a few pages, this fact was proved in 1810 by the great French
mathematician Pierre-Simon Laplace as part of a more general result. There is no
reason you should guess that the Normal model would be the one we need here,2

and, indeed, the importance of Laplace’s result was not immediately understood
by his contemporaries. But (unlike Laplace’s contemporaries in 1810) we know
how useful the Normal model can be.

Modeling how sample proportions vary from sample to sample is one of the
most powerful ideas we’ll see in this course. A sampling distribution model for
how a sample proportion varies from sample to sample allows us to quantify that
variation and to talk about how likely it is that we’d observe a sample proportion
in any particular interval.

To use a Normal model, we need to specify two parameters: its mean and
standard deviation. The center of the histogram is naturally at p, so we’ll put ,
the mean of the Normal, at p.

What about the standard deviation? Usually the mean gives us no informa-
tion about the standard deviation. Suppose we told you that a batch of bike helmets
had a mean diameter of 26 centimeters and asked what the standard deviation was.
If you said, “I have no idea,” you’d be exactly right. There’s no information about

from knowing the value of .
But there’s a special fact about proportions. With proportions we get some-

thing for free. Once we know the mean, p, we automatically also know the stan-
dard deviation. We saw in the last chapter that for a Binomial model the standard
deviation of the number of successes is . Now we want the standard deviation1npq

ms

m

pN

Activity: Sampling
Distribution of a Proportion. You
don’t have to imagine—you can
simulate.

NOTATION ALERT:

The letter p is our choice for 
the parameter of the model for
proportions. It violates our
“Greek letters for parameters”
rule, but if we stuck to that, our
natural choice would be . We
could use to be perfectly
consistent, but then we’d have
to write statements like

.That just seems a bit
weird to us. After all, we’ve
known that . . .
since the Greeks, and it’s a hard
habit to break.

So, we’ll use p for the model
parameter (the probability of a
success) and for the observed
proportion in a sample. We’ll
also use q for the probability of
a failure and for
its observed value.

But be careful. We’ve already
used capital P for a general
probability. And we’ll soon see
another use of P in the next
chapter! There are a lot of p’s in
this course; you’ll need to think
clearly about the context to
keep them straight.

qN1q = 1 - p2

pN

p = 3.1415926

p = 0.46

p

p

Pierre-Simon Laplace, 1749–1827.

Sample Proportions. Generate
sample after sample to see how
the proportions vary.
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Simulation: The Standard
Deviation of a Proportion. Do
you believe this formula for
standard deviation? Don’t just
take our word for it—convince
yourself with an experiment.

Simulation: Simulating
Sampling Distributions. Watch
the Normal model appear from
random proportions.

414 CHAPTER 18    Sampling Distribution Models

p
–3 pq

 n –2 pq
 n –1 pq

 n 1 pq
 n 2 pq

 n 3 pq
 n

FIGURE 18.2
A Normal model centered at p with a 

standard deviation of is a good 

model for a collection of proportions
found for many random samples of
size n from a population with success
probability p.

A

pq

n

3 For smaller n, we can just use a Binomial model.
4 The standard deviation is 1.75%. Remember that the standard deviation always has the
same units as the data. Here our units are %. But that can be confusing, because the stan-
dard deviation is not 1.75% of anything. It is 1.75 percentage points. If that’s confusing, try
writing the units as “percentage points” instead of %.

of the proportion of successes, . The sample proportion is the number of successes
divided by the number of trials, n, so the standard deviation is also divided by n:

When we draw simple random samples of n individuals, the proportions we
find will vary from sample to sample. As long as n is reasonably large,3 we can
model the distribution of these sample proportions with a probability model that is

N¢p, 
A

pq

n
≤ .

s1pN2 = SD1pN2 =

1npq

n
=

A

pq

n
.

pNpN

Although we’ll never know the true proportion of adults who believe in ghosts,
we’re supposing it to be 45%. Once we put the center at , the standard de-
viation for the CBS poll is

Here’s a picture of the Normal model for our simulation histogram:

SD1pN2 =

A

pq

n
=

A

10.45210.552

808
= 0.0175, or 1.75%.

p = 0.45

NOTATION ALERT:

In Chapter 8 we introduced as
the predicted value for y.The
“hat” here plays a similar role.
It indicates that —the observed
proportion in our data—is our
estimate of the parameter p.

pN

yN

0.3975 0.4150
–2s

0.4325
–1s

0.4500
p

0.4675
1s

0.4850
2s

0.5025
–3s 3s

FIGURE 18.3
Using 0.45 for p gives this Normal
model for Figure 18.1’s histogram of
the sample proportions of adults be-
lieving in ghosts .(n = 808)

Because we have a Normal model, we can use the 68–95–99.7 Rule or look up
other probabilities using a table or technology. For example, we know that 95% of
Normally distributed values are within two standard deviations of the mean, so
we should not be surprised if 95% of various polls gave results that were near 45%
but varied above and below that by no more than two standard deviations. Since

,4 we see that the CBS poll estimating belief in ghosts at 48% is
consistent with our guess of 45%. This is what we mean by sampling error. It’s not
really an error at all, but just variability you’d expect to see from one sample to an-
other. A better term would be sampling variability.

2 * 1.75% = 3.5%
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Assumptions and Conditions 415

How Good Is the Normal Model?
Stop and think for a minute about what we’ve just said. It’s a remarkable claim.
We’ve said that if we draw repeated random samples of the same size, n, from
some population and measure the proportion, , we see in each sample, then the
collection of these proportions will pile up around the underlying population pro-
portion, p, and that a histogram of the sample proportions can be modeled well
by a Normal model.

There must be a catch. Suppose the samples were of size 2, for example. Then
the only possible proportion values would be 0, 0.5, and 1. There’s no way the his-
togram could ever look like a Normal model with only three possible values for
the variable.

Well, there is a catch. The claim is only approximately true. (But, that’s OK.
After all, models are only supposed to be approximately true.) And the model be-
comes a better and better representation of the distribution of the sample propor-
tions as the sample size gets bigger.5 Samples of size 1 or 2 just aren’t going to
work very well. But the distributions of proportions of many larger samples do
have histograms that are remarkably close to a Normal model.

Assumptions and Conditions
To use a model, we usually must make some assumptions. To use the sampling
distribution model for sample proportions, we need two assumptions:

The Independence Assumption: The sampled values must be independent
of each other.
The Sample Size Assumption: The sample size, n, must be large enough.

Of course, assumptions are hard—often impossible—to check. That’s why we
assume them. But, as we saw in Chapter 8, we should check to see whether the as-
sumptions are reasonable. To think about the Independence Assumption, we of-
ten wonder whether there is any reason to think that the data values might affect
each other. Fortunately, we can often check conditions that provide information
about the assumptions. Check these conditions before using the Normal to model
the distribution of sample proportions:

Randomization Condition: If your data come from an experiment, subjects
should have been randomly assigned to treatments. If you have a survey,
your sample should be a simple random sample of the population. If some
other sampling design was used, be sure the sampling method was not biased
and that the data are representative of the population.
10% Condition: The sample size, n, must be no larger than 10% of the popu-
lation. For national polls, the total population is usually very large, so the
sample is a small fraction of the population.
Success/Failure Condition: The sample size has to be big enough so that we
expect at least 10 successes and at least 10 failures. When np and nq are at least
10, we have enough data for sound conclusions. For the CBS survey, a “suc-
cess” might be believing in ghosts. With , we expect 
successes and failures. Both are at least 10, so we cer-
tainly expect enough successes and enough failures for the condition to be
satisfied.

808 * 0.55 = 444
808 * 0.45 = 364p = 0.45

pN

0.0 0.5 1.0

1500

1000

500

0

FIGURE 18.4
Proportions from samples of size 2 can
take on only three possible values. A
Normal model does not work well.

5 Formally, we say the claim is true in the limit as n grows.

The terms  “success” and
“failure” for the outcomes
that have probability p and q
are common in Statistics. But
they are completely arbitrary
labels. When we say that 
a disease occurs with
probability p, we certainly
don’t mean that getting sick
is a  “success” in the ordinary
sense of the word.
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416 CHAPTER 18    Sampling Distribution Models

These last two conditions seem to conflict with each other. The Success/ 
Failure Condition wants sufficient data. How much depends on p. If p is near 0.5,
we need a sample of only 20 or so. If p is only 0.01, however, we’d need 1000. But
the 10% Condition says that a sample should be no larger than 10% of the popu-
lation. If you’re thinking, “Wouldn’t a larger sample be better?” you’re right of
course. It’s just that if the sample were more than 10% of the population, we’d
need to use different methods to analyze the data. Fortunately, this isn’t usually a
problem in practice. Often, as in polls that sample from all U.S. adults or indus-
trial samples from a day’s production, the populations are much larger than 10
times the sample size.

A Sampling Distribution Model for a Proportion
We’ve simulated repeated samples and looked at a histogram of the sample pro-
portions. We modeled that histogram with a Normal model. Why do we bother to
model it? Because this model will give us insight into how much the sample propor-
tion can vary from sample to sample. We’ve simulated many of the other random
samples we might have gotten. The model is an attempt to show the distribution
from all the random samples. But how do we know that a Normal model will re-
ally work? Is this just an observation based on some simulations that might be ap-
proximately true some of the time?

It turns out that this model can be justified theoretically and that the larger
the sample size, the better the model works. That’s the result Laplace proved. We
won’t bother you with the math because, in this instance, it really wouldn’t help
your understanding.6 Nevertheless, the fact that we can think of the sample pro-
portion as a random variable taking on a different value in each random sample,
and then say something this specific about the distribution of those values, is a
fundamental insight—one that we will use in each of the next four chapters.

We have changed our point of view in a very important way. No longer is a
proportion something we just compute for a set of data. We now see it as a ran-
dom variable quantity that has a probability distribution, and thanks to Laplace
we have a model for that distribution. We call that the sampling distribution
model for the proportion, and we’ll make good use of it.

6 The proof is pretty technical. We’re not sure it helps our understanding all that much either.

THE SAMPLING DISTRIBUTION MODEL FOR A PROPORTION
Provided that the sampled values are independent and the sample size is
large enough, the sampling distribution of is modeled by a Normal model 

with mean p and standard deviation SD1pN2 =

A

pq

n
.m1pN2 =

pN

We have now answered the
question raised at the start of
the chapter.To know how
variable a sample proportion
is, we need to know the
proportion and the size of
the sample.That’s all.

Without the sampling distribution model, the rest of Statistics just wouldn’t
exist. Sampling models are what makes Statistics work. They inform us about the
amount of variation we should expect when we sample. Suppose we spin a coin
100 times in order to decide whether it’s fair or not. If we get 52 heads, we’re prob-
ably not surprised. Although we’d expect 50 heads, 52 doesn’t seem particularly
unusual for a fair coin. But we would be surprised to see 90 heads; that might re-
ally make us doubt that the coin is fair. How about 64 heads? Harder to say. That’s
a case where we need the sampling distribution model. The sampling model
quantifies the variability, telling us how surprising any sample proportion is. And

Simulation: Simulate the
Sampling Distribution Model of 
a Proportion. You probably don’t
want to work through the formal
mathematical proof; a simulation
is far more convincing!
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A Sampling Distribution Model for a Proportion 417

it enables us to make informed decisions about how precise our estimate of the
true proportion might be. That’s exactly what we’ll be doing for the rest of this
book.

Sampling distribution models act as a bridge from the real world of data to
the imaginary model of the statistic and enable us to say something about the
population when all we have is data from the real world. This is the huge leap of
Statistics. Rather than thinking about the sample proportion as a fixed quantity
calculated from our data, we now think of it as a random variable—our value is
just one of many we might have seen had we chosen a different random sample.
By imagining what might happen if we were to draw many, many samples from
the same population, we can learn a lot about how close the statistics computed
from our one particular sample may be to the corresponding population parame-
ters they estimate. That’s the path to the margin of error you hear about in polls
and surveys. We’ll see how to determine that in the next chapter.

Using the sampling distribution model for proportionsFOR EXAMPLE

The Centers for Disease Control and Prevention report that 22% of 18-year-old women in the United States have a body mass index (BMI)7 of 25 or
more—a value considered by the National Heart Lung and Blood Institute to be associated with increased health risk.

As part of a routine health check at a large college, the physical education department usually requires students to come in to be measured and
weighed. This year, the department decided to try out a self-report system. It asked 200 randomly selected female students to report their heights and
weights (from which their BMIs could be calculated). Only 31 of these students had BMIs greater than 25.

Question: Is this proportion of high-BMI students unusually small?

First, check the conditions:
Ç Randomization Condition: The department drew a random sample, so the respondents should be independent and

randomly selected from the population.
Ç 10% Condition: 200 respondents is less than 10% of all the female students at a “large college.”
Ç Success/Failure Condition: The department expected “successes” and

“failures,” both at least 10.
It’s okay to use a Normal model to describe the sampling distribution of the proportion of respondents with BMIs
above 25.

The phys ed department observed .

The department expected 

.

By the 68–95–99.7 Rule, I know that values more than 2 standard deviations below the mean of a Normal model
show up less than 2.5% of the time. Perhaps women at this college differ from the general population, or self-reporting
may not provide accurate heights and weights.

so z =

pN - p
SD(pN)

=

0.155 - 0.22
0.029

= -2.24

E(pN) = p = 0.22, with SD(pN) =

A

pq
n

=

A

(0.22)(0.78)
200

= 0.029,

pN =

31
200

= 0.155

nq = 200(0.78) = 156
np = 200(0.22) = 44

7 BMI = weight in kg/(height in m)2.

BOCK_C18_0321570448 pp3.qxd  12/1/08  7:46 PM  Page 417



418 CHAPTER 18    Sampling Distribution Models

8 Actually, it’s quite difficult to get an accurate estimate of the proportion of lefties in the
population. Estimates range from 8% to 15%.

Plan State what we want to know.

JUST CHECKING
1. You want to poll a random sample of 100 students on campus to see if they are in favor of the pro-

posed location for the new student center. Of course, you’ll get just one number, your sample propor-
tion, . But if you imagined all the possible samples of 100 students you could draw and imagined the
histogram of all the sample proportions from these samples, what shape would it have?

2. Where would the center of that histogram be?

3. If you think that about half the students are in favor of the plan, what would the standard deviation
of the sample proportions be?

pN

Suppose that about 13% of the population is left-handed.8 A 200-seat school auditorium has been
built with 15 “lefty seats,” seats that have the built-in desk on the left rather than the right arm of
the chair. (For the right-handed readers among you, have you ever tried to take notes in a chair
with the desk on the left side?)

Question: In a class of 90 students, what’s the probability that there will not be enough seats for
the left-handed students?

Working with Sampling Distribution Models for ProportionsSTEP-BY-STEP EXAMPLE

I want to find the probability that in a group
of 90 students, more than 15 will be left-
handed. Since 15 out of 90 is 16.7%, I need
the probability of finding more than 16.7%
left-handed students out of a sample of 90 if
the proportion of lefties is 13%.

Model Think about the assumptions and
check the conditions.

You might be able to think of cases where
the Independence Assumption is not
plausible—for example, if the students
are all related, or if they were selected for
being left- or right-handed. But for a ran-
dom sample, the assumption of
independence seems reasonable.

Ç Independence Assumption: It is reason-
able to assume that the probability that
one student is left-handed is not changed
by the fact that another student is
right- or left-handed.

Ç Randomization Condition: The 90 stu-
dents in the class can be thought of as
a random sample of students.

Ç 10% Condition: 90 is surely less than
10% of the population of all students.
(Even if the school itself is small, I’m
thinking of the population of all possible
students who could have gone to the
school.)

Ç Success/Failure Condition:

nq = 90(0.87) = 78.3 Ú 10
np = 90(0.13) = 11.7 Ú 10
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What About Quantitative Data? 419

What About Quantitative Data?
Proportions summarize categorical variables. And the Normal sampling distribu-
tion model looks like it is going to be very useful. But can we do something similar
with quantitative data?

Of course we can (or we wouldn’t have asked). Even more remarkable, not
only can we use all of the same concepts, but almost the same model, too.

What are the concepts? We know that when we sample at random or random-
ize an experiment, the results we get will vary from sample-to-sample and from
experiment-to-experiment. The Normal model seems an incredibly simple way to
summarize all that variation. Could something that simple work for means? We
won’t keep you in suspense. It turns out that means also have a sampling distri-
bution that we can model with a Normal model. And it turns out that Laplace’s
theoretical result applies to means, too. As we did with proportions, we can get
some insight from a simulation.

The population proportion is . The
conditions are satisfied, so I’ll model the sam-
pling distribution of with a Normal model
with mean 0.13 and a standard deviation of

My model for is .N (0.13, 0.035)pN

SD(pN) =

A

pq
n

=

A

(0.13)(0.87)
90

L 0.035

pN

p = 0.13State the parameters and the sampling
distribution model.

z =

pN - p
SD(pN)

=

0.167 - 0.13
0.035

= 1.06

Plot Make a picture. Sketch the model
and shade the area we’re interested in, in
this case the area to the right of 16.7%.

Mechanics Use the standard deviation
as a ruler to find the z-score of the cutoff
proportion. We see that 16.7% lefties
would be just over one standard devia-
tion above the mean.

Find the resulting probability from a
table of Normal probabilities, a computer
program, or a calculator.

0.235 
3s

0.2
2s

0.165
1s

0.095
–1s

0.06
–2s

0.025
–3s

0.130
p

0.167

0.145

P(pN 7 0.167) = P(z 7 1.06) = 0.1446

There is about a 14.5% chance that there will
not be enough seats for the left-handed stu-
dents in the class.

Conclusion Interpret the probability in
the context of the question.
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Simulating the Sampling Distribution of a Mean
Here’s a simple simulation. Let’s start with one fair die. If we toss this die 10,000
times, what should the histogram of the numbers on the face of the die look like?
Here are the results of a simulated 10,000 tosses:

1.0 2.0 3.0 4.0 5.0 6.0
2-Dice Average

2000

1500

1000

500

# 
of

 T
os

se
s

Now let’s toss a pair of dice and record the average of the two. If we repeat
this (or at least simulate repeating it) 10,000 times, recording the average of each
pair, what will the histogram of these 10,000 averages look like? Before you look,
think a minute. Is getting an average of 1 on two dice as likely as getting an aver-
age of 3 or 3.5?

Let’s see:

We’re much more likely to get an average near 3.5 than we are to get one near
1 or 6. Without calculating those probabilities exactly, it’s fairly easy to see that the
only way to get an average of 1 is to get two 1’s. To get a total of 7 (for an average
of 3.5), though, there are many more possibilities. This distribution even has a
name: the triangular distribution.

What if we average 3 dice? We’ll sim-
ulate 10,000 tosses of 3 dice and take
their average:

3 4
3-Dice Average

1500

1000

500# 
of

 T
os

se
s

651 2

What’s happening? First notice that it’s getting harder to have averages near
the ends. Getting an average of 1 or 6 with 3 dice requires all three to come up 1
or 6, respectively. That’s less likely than for 2 dice to come up both 1 or both 6. The
distribution is being pushed toward the middle. But what’s happening to the
shape? (This distribution doesn’t have a name, as far as we know.)
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The Fundamental Theorem of Statistics 421

Let’s continue this simulation to
see what happens with larger samples.
Here’s a histogram of the averages for
10,000 tosses of 5 dice:

1.0
5-Dice Average

1500

1000

500# 
of

 T
os

se
s

2.0 3.0 4.0 5.0 6.0

The pattern is becoming clearer. Two things continue to happen. The first fact we
knew already from the Law of Large Numbers. It says that as the sample size (num-
ber of dice) gets larger, each sample average is more likely to be closer to the popula-
tion mean. So, we see the shape continuing to tighten around 3.5. But the shape of
the distribution is the surprising part. It’s becoming bell-shaped. And not just bell-
shaped; it’s approaching the Normal model.

Are you convinced? Let’s skip
ahead and try 20 dice. The histogram
of averages for 10,000 throws of 20
dice looks like this:

1500

1000

500

1.0 2.0 3.0 4.0 5.0 6.0
20-Dice Average

# 
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 T
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se
s

Now we see the Normal shape again (and notice how much smaller the
spread is). But can we count on this happening for situations other than dice
throws? What kinds of sample means have sampling distributions that we can
model with a Normal model? It turns out that Normal models work well amaz-
ingly often.

The Fundamental Theorem of Statistics
The dice simulation may look like a special situation, but it turns out that what we
saw with dice is true for means of repeated samples for almost every situation.
When we looked at the sampling distribution of a proportion, we had to check
only a few conditions. For means, the result is even more remarkable. There are al-
most no conditions at all.

Let’s say that again: The sampling distribution of any mean becomes more
nearly Normal as the sample size grows. All we need is for the observations to be
independent and collected with randomization. We don’t even care about the
shape of the population distribution!9 This surprising fact is the result Laplace
proved in a fairly general form in 1810. At the time, Laplace’s theorem caused
quite a stir (at least in mathematics circles) because it is so unintuitive. Laplace’s
result is called the Central Limit Theorem10 (CLT).

Activity: The Sampling
Distribution Model for Means.
Don’t just sit there reading about
the simulation—do it yourself.

9 OK, one technical condition. The data must come from a population with a finite vari-
ance. You probably can’t imagine a population with an infinite variance, but statisticians
can construct such things, so we have to discuss them in footnotes like this. It really makes
no difference in how you think about the important stuff, so you can just forget we men-
tioned it.
10 The word “central” in the name of the theorem means “fundamental.” It doesn’t refer to
the center of a distribution.

“The theory of probabilities is at
bottom nothing but common
sense reduced to calculus.”

—Laplace, in Théorie
analytique des

probabilités, 1812
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422 CHAPTER 18    Sampling Distribution Models

Why should the Normal model show up again for the sampling distribution
of means as well as proportions? We’re not going to try to persuade you that it is
obvious, clear, simple, or straightforward. In fact, the CLT is surprising and a bit
weird. Not only does the distribution of means of many random samples get
closer and closer to a Normal model as the sample size grows, this is true regard-
less of the shape of the population distribution! Even if we sample from a skewed or
bimodal population, the Central Limit Theorem tells us that means of repeated
random samples will tend to follow a Normal model as the sample size grows. Of
course, you won’t be surprised to learn that it works better and faster the closer
the population distribution is to a Normal model. And it works better for larger
samples. If the data come from a population that’s exactly Normal to start with,
then the observations themselves are Normal. If we take samples of size 1, their
“means” are just the observations—so, of course, they have Normal sampling dis-
tribution. But now suppose the population distribution is very skewed (like the
CEO data from Chapter 5, for example). The CLT works, although it may take a
sample size of dozens or even hundreds of observations for the Normal model to
work well.

For example, think about a really bimodal population, one that consists of
only 0’s and 1’s. The CLT says that even means of samples from this population
will follow a Normal sampling distribution model. But wait. Suppose we have a
categorical variable and we assign a 1 to each individual in the category and a 0
to each individual not in the category. And then we find the mean of these 0’s and
1’s. That’s the same as counting the number of individuals who are in the cate-
gory and dividing by n. That mean will be . . . the sample proportion, , of individu-
als who are in the category (a “success”). So maybe it wasn’t so surprising after
all that proportions, like means, have Normal sampling distribution models; they
are actually just a special case of Laplace’s remarkable theorem. Of course, for
such an extremely bimodal population, we’ll need a reasonably large sample
size—and that’s where the special conditions for proportions come in.

pN

Laplace was one of the
greatest scientists and
mathematicians of his 
time. In addition to his
contributions to probability
and statistics, he published
many new results in
mathematics, physics, and
astronomy (where his
nebular theory was one of
the first to describe the
formation of the solar system
in much the way it is
understood today). He also
played a leading role in
establishing the metric
system of measurement.

His brilliance, though,
sometimes got him into
trouble. A visitor to the
Académie des Sciences in
Paris reported that Laplace
let it be widely known that he
considered himself the best
mathematician in France.The
effect of this on his colleagues
was not eased by the fact that
Laplace was right.

THE CENTRAL LIMIT THEOREM (CLT)
The mean of a random sample is a random variable whose sampling distri-
bution can be approximated by a Normal model. The larger the sample,
the better the approximation will be.

Assumptions and Conditions
The CLT requires essentially the same assumptions as we saw for modelling pro-
portions:

Independence Assumption: The sampled values must be independent of
each other.
Sample Size Assumption: The sample size must be sufficiently large.

We can’t check these directly, but we can think about whether the Independence
Assumption is plausible. We can also check some related conditions:

Randomization Condition: The data values must be sampled randomly, or
the concept of a sampling distribution makes no sense.
10% Condition: When the sample is drawn without replacement (as is usually
the case), the sample size, n, should be no more than 10% of the population.
Large Enough Sample Condition: Although the CLT tells us that a Normal
model is useful in thinking about the behavior of sample means when the

Activity: The Central
Limit Theorem. Does it really
work for samples from non-
Normal populations?

The Central Limit Theorem. See
the sampling distribution of sample
means take shape as you choose
sample after sample.
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sample size is large enough, it doesn’t tell us how large a sample we need.
The truth is, it depends; there’s no one-size-fits-all rule. If the population is
unimodal and symmetric, even a fairly small sample is okay. If the popula-
tion is strongly skewed, like the compensation for CEOs we looked at in
Chapter 5, it can take a pretty large sample to allow use of a Normal model
to describe the distribution of sample means. For now you’ll just need to
think about your sample size in the context of what you know about the pop-
ulation, and then tell whether you believe the Large Enough Sample Condi-
tion has been met.

But Which Normal?
The CLT says that the sampling distribution of any mean or proportion is ap-
proximately Normal. But which Normal model? We know that any Normal is
specified by its mean and standard deviation. For proportions, the sampling dis-
tribution is centered at the population proportion. For means, it’s centered at the
population mean. What else would we expect?

What about the standard deviations, though? We noticed in our dice simulation
that the histograms got narrower as we averaged more and more dice together. This
shouldn’t be surprising. Means vary less than the individual observations. Think
about it for a minute. Which would be more surprising, having one person in your
Statistics class who is over 6'9" tall or having the mean of 100 students taking the
course be over 6'9"? The first event is fairly rare.11 You may have seen somebody
this tall in one of your classes sometime. But finding a class of 100 whose mean
height is over 6'9" tall just won’t happen. Why? Because means have smaller stan-
dard deviations than individuals.

How much smaller? Well, we have good news and bad news. The good news
is that the standard deviation of falls as the sample size grows. The bad news is
that it doesn’t drop as fast as we might like. It only goes down by the square root
of the sample size. Why? The Math Box will show you that the Normal model for
the sampling distribution of the mean has a standard deviation equal to

where is the standard deviation of the population. To emphasize that this is a
standard deviation parameter of the sampling distribution model for the sample
mean, , we write or .s1y2SD1y2y

s

SD1y2 =

s

1n

y

Activity: The Standard
Deviation of Means. Experiment
to see how the variability of the
mean changes with the sample
size.

THE SAMPLING DISTRIBUTION MODEL FOR A MEAN (CLT)
When a random sample is drawn from any population with mean and
standard deviation , its sample mean, , has a sampling distribution 

with the same mean but whose standard deviation is (and we write 

). No matter what population the random sample comes 

from, the shape of the sampling distribution is approximately Normal as long
as the sample size is large enough. The larger the sample used, the more
closely the Normal approximates the sampling distribution for the mean.

s1y2 = SD1y2 =

s

1n

s

1n
m

ys

m
Activity: The Sampling

Distribution of the Mean. The
CLT tells us what to expect. In
this activity you can work with
the CLT or simulate it if you
prefer.

11 If students are a random sample of adults, fewer than 1 out of 10,000 should be taller than
6'9". Why might college students not really be a random sample with respect to height?
Even if they’re not a perfectly random sample, a college student over 6'9" tall is still rare.
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We know that is a sum divided by n:

As we saw in Chapter 16, when a random variable is divided by a constant its variance is divided
by the square of the constant:

To get our sample, we draw the y’s randomly, ensuring they are independent. For independent
random variables, variances add:

All n of the y’s were drawn from our population, so they all have the same variance, :

The standard deviation of is the square root of this variance:

SD1y2 =

A

s2

n
=

s

1n
.

y

Var1y2 =

s2
+ s2

+ s2
+

.  .  .
+ s2

n2
=

ns2

n2
=

s2

n
.

s2

Var1y2 =

Var1y12 + Var1y22 + Var1y32 +
.  .  .

+ Var1yn2

n2
.

Var1y2 =

Var1y1 + y2 + y3 +
.  .  .

+ yn2

n2
.

y =

y1 + y2 + y3 +
.  .  .

+ yn

n
.

y

424 CHAPTER 18    Sampling Distribution Models

We now have two closely related sampling distribution models that we can use
when the appropriate assumptions and conditions are met. Which one we use de-
pends on which kind of data we have:

u When we have categorical data, we calculate a sample proportion, ; the
sampling distribution of this random variable has a Normal model with a
mean at the true proportion (“Greek letter”) p and a standard deviation of 

. We’ll use this model in Chapters 19 through 22.

u When we have quantitative data, we calculate a sample mean, ; the sampling
distribution of this random variable has a Normal model with a mean at the 
true mean, , and a standard deviation of . We’ll use this model
in Chapters 23, 24, and 25.

The means of these models are easy to remember, so all you need to be care-
ful about is the standard deviations. Remember that these are standard deviations
of the statistics and . They both have a square root of n in the denominator. That
tells us that the larger the sample, the less either statistic will vary. The only dif-
ference is in the numerator. If you just start by writing for quantitative
data and for categorical data, you’ll be able to remember which formula
to use.

SD1pN2
SD1y2

ypN

SD1y2 =

s

1n
m

y

SD1pN2 =

A

pq

n
=

1pq

1n

pN

MATH BOX
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Using the CLT for meansFOR EXAMPLE

Recap: A college physical education department asked a random sample of 200 female students to self-report their heights and weights, but the per-
centage of students with body mass indexes over 25 seemed suspiciously low. One possible explanation may be that the respondents “shaded” their
weights down a bit. The CDC reports that the mean weight of 18-year-old women is 143.74 lb, with a standard deviation of 51.54 lb, but these 200 ran-
domly selected women reported a mean weight of only 140 lb.

Question: Based on the Central Limit Theorem and the 68–95–99.7 Rule, does the mean weight in this sample seem exceptionally low, or might this
just be random sample-to-sample variation?

The conditions check out okay:
Ç Randomization Condition: The women were a random sample and their weights can be assumed to be independent.
Ç 10% Condition: They sampled fewer than 10% of all women at the college.
Ç Large Enough Sample Condition: The distribution of college women’s weights is likely to be unimodal and reasonably

symmetric, so the CLT applies to means of even small samples; 200 values is plenty.

The sampling model for sample means is ap-
proximately Normal with and 

. The expected

distribution of sample means is:

The 68–95–99.7 Rule suggests that although the reported mean weight of 140 pounds is somewhat lower than ex-
pected, it does not appear to be unusual. Such variability is not all that extraordinary for samples of this size.

SD(y) =

s

1n
=

51.54
1200

= 3.64

E(y) = 143.7

132.82 136.46 140.10 147.38 151.02 154.66143.74
Sample Means

68%

95%

99.7%

140

12 Cynthia L. Ogden, Cheryl D. Fryar, Margaret D. Carroll, and Katherine M. Flegal, Mean
Body Weight, Height, and Body Mass Index, United States 1960–2002, Advance Data from Vital
and Health Statistics Number 347, Oct. 27, 2004. https//www.cdc.gov/nchs

The Centers for Disease Control and Prevention reports that the mean weight of adult men in the
United States is 190 lb with a standard deviation of 59 lb.12

Question: An elevator in our building has a weight limit of 10 persons or 2500 lb. What’s the prob-
ability that if 10 men get on the elevator, they will overload its weight limit?

Working with the Sampling Distribution Model for the MeanSTEP-BY-STEP EXAMPLE

Asking the probability that the total weight of
a sample of 10 men exceeds 2500 pounds is
equivalent to asking the probability that their
mean weight is greater than 250 pounds.

Plan State what we want to know.
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426 CHAPTER 18    Sampling Distribution Models

Plot Make a picture. Sketch the model
and shade the area we’re interested in.
Here the mean weight of 250 pounds ap-
pears to be far out on the right tail of the
curve.

z =

y - m

SD(y)
=

250 - 190
18.66

= 3.21
Mechanics Use the standard deviation
as a ruler to find the z-score of the cutoff
mean weight. We see that an average of
250 pounds is more than 3 standard devi-
ations above the mean.

The chance that a random collection of 10 men
will exceed the elevator’s weight limit is only
0.0007. So, if they are a random sample, it is
quite unlikely that 10 people will exceed the 
total weight allowed on the elevator.

Conclusion Interpret your result in the
proper context, being careful to relate it to
the original question.

P(y 7 250) = P(z 7 3.21) = 0.0007Find the resulting probability from a table
of Normal probabilities such as Table Z, a
computer program, or a calculator.

for example, if they were all from the same
family or if the elevator were in a building
with a diet clinic!)

Ç Randomization Condition: I’ll assume that
the 10 men getting on the elevator are a
random sample from the population.

Ç 10% Condition: 10 men is surely less than
10% of the population of possible elevator
riders.

Ç Large Enough Sample Condition: I suspect
the distribution of population weights is
roughly unimodal and symmetric, so my
sample of 10 men seems large enough.

The mean for all weights is and the
standard deviation is pounds. Since
the conditions are satisfied, the CLT says that
the sampling distribution of has a Normal
model with mean 190 and standard deviation

SD(y) =

s

1n
=

59
110

L 18.66

y

s = 59
m = 190

Note that if the sample were larger we’d
be less concerned about the shape of the
distribution of all weights.

State the parameters and the sampling
model.

171.3 190.0 208.7 227.3 246.0152.7134.0
y

Ç Independence Assumption: It’s reasonable
to think that the weights of 10 randomly
sampled men will be independent of each
other. (But there could be exceptions—

Model Think about the assumptions and
check the conditions.
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About Variation
Means vary less than individual data values. That makes sense. If the same test is
given to many sections of a large course and the class average is, say, 80%, some
students may score 95% because individual scores vary a lot. But we’d be shocked
(and pleased!) if the average score of the students in any section was 95%. Aver-
ages are much less variable. Not only do group averages vary less than individ-
ual values, but common sense suggests that averages should be more consistent
for larger groups. The Central Limit Theorem confirms this hunch; the fact that 

has n in the denominator shows that the variability of sample means

decreases as the sample size increases. There’s a catch, though. The standard de-
viation of the sampling distribution declines only with the square root of the sam-
ple size and not, for example, with 1/n.

The mean of a random sample of 4 has half the standard deviation

of an individual data value. To cut the standard deviation in half again, we’d need
a sample of 16, and a sample of 64 to halve it once more.

If only we had a much larger sample, we could get the standard deviation of
the sampling distribution really under control so that the sample mean could tell
us still more about the unknown population mean, but larger samples cost more
and take longer to survey. And while we’re gathering all that extra data, the pop-
ulation itself may change, or a news story may alter opinions. There are practical
limits to most sample sizes. As we shall see, that nasty square root limits how
much we can make a sample tell about the population. This is an example of
something that’s known as the Law of Diminishing Returns.

a
1
14

=

1
2
b

SD1y2 =

s

1n
“The n’s justify the means.”

—Apocryphal 
statistical saying

13 Wainer, H. and Zwerling, H., “Legal and empirical evidence that smaller schools do not
improve student achievement,” The Phi Delta Kappan 2006 87:300–303. Discussed in
Howard Wainer, “The Most Dangerous Equation,” American Scientist, May–June 2007, 
pp. 249–256; also at www.Americanscientist.org.

A Billion Dollar Misunderstanding? In the late 1990s the Bill and Melinda
Gates Foundation began funding an effort to encourage the breakup of large schools
into smaller schools. Why? It had been noticed that smaller schools were more
common among the best-performing schools than one would expect. In time, the
Annenberg Foundation, the Carnegie Corporation, the Center for Collaborative Edu-
cation, the Center for School Change, Harvard’s Change Leadership Group, the
Open Society Institute, Pew Charitable Trusts, and the U.S. Department of Educa-
tion’s Smaller Learning Communities Program all supported the effort. Well over a
billion dollars was spent to make schools smaller.

But was it all based on a misunderstanding of sampling distributions? Statisti-
cians Howard Wainer and Harris Zwerling13 looked at the mean test scores of
schools in Pennsylvania. They found that indeed 12% of the top-scoring 50 schools
were from the smallest 3% of Pennsylvania schools—substantially more than the
3% we’d naively expect. But then they looked at the bottom 50. There they found
that 18% were small schools! The explanation? Mean test scores are, well, means.
We are looking at a rough real-world simulation in which each school is a trial. Even
if all Pennsylvania schools were equivalent, we’d expect their mean scores to vary. 
How much? The CLT tells us that means of test scores vary according to . Smaller 

schools have (by definition) smaller n’s, so the sampling distributions of their mean
scores naturally have larger standard deviations. It’s natural, then, that small
schools have both higher and lower mean scores.

s

1n
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The Real World and the Model World
Be careful. We have been slipping smoothly between the real world, in which we
draw random samples of data, and a magical mathematical model world, in
which we describe how the sample means and proportions we observe in the real
world behave as random variables in all the random samples that we might have
drawn. Now we have two distributions to deal with. The first is the real-world
distribution of the sample, which we might display with a histogram (for quanti-
tative data) or with a bar chart or table (for categorical data). The second is the
math world sampling distribution model of the statistic, a Normal model based on
the Central Limit Theorem. Don’t confuse the two.

For example, don’t mistakenly think the CLT says that the data are Normally
distributed as long as the sample is large enough. In fact, as samples get larger,
we expect the distribution of the data to look more and more like the population
from which they are drawn—skewed, bimodal, whatever—but not necessarily
Normal. You can collect a sample of CEO salaries for the next 1000 years,14 but the
histogram will never look Normal. It will be skewed to the right. The Central
Limit Theorem doesn’t talk about the distribution of the data from the sample. It
talks about the sample means and sample proportions of many different random
samples drawn from the same population. Of course, the CLT does require that
the sample be big enough when the population shape is not unimodal and sym-
metric, but the fact that, even then, a Normal model is useful is still a very surpris-
ing and powerful result.

14 Don’t forget to adjust for inflation.

On October 26, 2005, The Seattle Times reported:

[T]he Gates Foundation announced last week it is moving away from its em-
phasis on converting large high schools into smaller ones and instead giving
grants to specially selected school districts with a track record of academic
improvement and effective leadership. Education leaders at the Foundation
said they concluded that improving classroom instruction and mobilizing the
resources of an entire district were more important first steps to improving
high schools than breaking down the size.

JUST CHECKING
4. Human gestation times have a mean of about 266 days, with a standard deviation of about 16 days.

If we record the gestation times of a sample of 100 women, do we know that a histogram of the
times will be well modeled by a Normal model?

5. Suppose we look at the average gestation times for a sample of 100 women. If we imagined all the
possible random samples of 100 women we could take and looked at the histogram of all the sam-
ple means, what shape would it have?

6. Where would the center of that histogram be?

7. What would be the standard deviation of that histogram?
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Sampling Distribution Models
Let’s summarize what we’ve learned about sampling distributions. At the heart is
the idea that the statistic itself is a random variable. We can’t know what our statistic
will be because it comes from a random sample. It’s just one instance of some-
thing that happened for our particular random sample. A different random sam-
ple would have given a different result. This sample-to-sample variability is what
generates the sampling distribution. The sampling distribution shows us the dis-
tribution of possible values that the statistic could have had.

We could simulate that distribution by pretending to take lots of samples.
Fortunately, for the mean and the proportion, the CLT tells us that we can model
their sampling distribution directly with a Normal model.

The two basic truths about sampling distributions are:

1. Sampling distributions arise because samples vary. Each random sample will
contain different cases and, so, a different value of the statistic.

2. Although we can always simulate a sampling distribution, the Central Limit
Theorem saves us the trouble for means and proportions.

Here’s a picture showing the process going into the sampling distribution
model:

Simulation: The CLT for
Real Data. Why settle for a
picture when you can see it in
action?

–3
s
n –2

s
n –1

s
n +1

s
n +2

s
n +3

s
n

n

m

s

m
s

y1 y2 y3 • • •

FIGURE 18.5
We start with a population model, which can have any shape. It
can even be bimodal or skewed (as this one is). We label the
mean of this model and its standard deviation, .

We draw one real sample (solid line) of size n and show its
histogram and summary statistics. We imagine (or simulate)
drawing many other samples (dotted lines), which have their
own histograms and summary statistics.

We (imagine) gathering all the means into a histogram.

The CLT tells us we can model the shape of this histogram with a
Normal model. The mean of this Normal is , and the standard

deviation is .SD1y2 =

s

1n

m

sm

WHAT CAN GO WRONG?
u Don’t confuse the sampling distribution with the distribution of the sample. When you take a

sample, you always look at the distribution of the values, usually with a histogram,
and you may calculate summary statistics. Examining the distribution of the sample
data is wise. But that’s not the sampling distribution. The sampling distribution is
an imaginary collection of all the values that a statistic might have taken for all pos-
sible random samples—the one you got and the ones that you didn’t get. We use the
sampling distribution model to make statements about how the statistic varies.

(continued)
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15 For proportions, of course, there is a rule: the Success/Failure Condition. That works for
proportions because the standard deviation of a proportion is linked to its mean.

u Beware of observations that are not independent. The CLT depends crucially on the as-
sumption of independence. If our elevator riders are related, are all from the same
school (for example, an elementary school), or in some other way aren’t a random
sample, then the statements we try to make about the mean are going to be wrong.
Unfortunately, this isn’t something you can check in your data. You have to think
about how the data were gathered. Good sampling practice and well-designed ran-
domized experiments ensure independence.

u Watch out for small samples from skewed populations. The CLT assures us that the sam-
pling distribution model is Normal if n is large enough. If the population is nearly
Normal, even small samples (like our 10 elevator riders) work. If the population is
very skewed, then n will have to be large before the Normal model will work well.
If we sampled 15 or even 20 CEOs and used to make a statement about the mean
of all CEOs’ compensation, we’d likely get into trouble because the underlying data
distribution is so skewed. Unfortunately, there’s no good rule of thumb.15 It just de-
pends on how skewed the data distribution is. Always plot the data to check.

y

CONNECTIONS
The concept of a sampling distribution connects to almost everything we have done. The funda-
mental connection is to the deliberate application of randomness in random sampling and ran-
domized comparative experiments. If we didn’t employ randomness to generate unbiased data,
then repeating the data collection would just get the same data values again (with perhaps a 
few new measurement or recording errors). The distribution of statistic values arises directly
because different random samples and randomized experiments would generate different
statistic values.

The connection to the Normal distribution is obvious. We first introduced the Normal model be-
fore because it was “nice.” As a unimodal, symmetric distribution with 99.7% of its area within
three standard deviations of the mean, the Normal model is easy to work with. Now we see that
the Normal holds a special place among distributions because we can use it to model the sampling
distributions of the mean and the proportion.

We use simulation to understand sampling distributions. In fact, some important sampling dis-
tributions were discovered first by simulation.

WHAT HAVE WE LEARNED?

Way back in Chapter 1 we said that Statistics is about variation. We know that no sample fully and
exactly describes the population; sample proportions and means will vary from sample to sample.
That’s sampling error (or, better, sampling variability). We know it will always be present—indeed,
the world would be a boring place if variability didn’t exist. You might think that sampling variabil-
ity would prevent us from learning anything reliable about a population by looking at a sample,
but that’s just not so. The fortunate fact is that sampling variability is not just unavoidable—it’s
predictable!
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We’ve learned how the Central Limit Theorem describes the behavior of sample proportions—
shape, center, and spread—as long as certain assumptions and conditions are met. The sample
must be independent, random, and large enough that we expect at least 10 successes and failures.
Then:

u The sampling distribution (the imagined histogram of the proportions from all possible samples)
is shaped like a Normal model.

u The mean of the sampling model is the true proportion in the population.

u The standard deviation of the sample proportions is .

And we’ve learned to describe the behavior of sample means as well, based on this amazing result
known as the Central Limit Theorem—the Fundamental Theorem of Statistics. Again the sample
must be independent and random—no surprise there—and needs to be larger if our data come from
a population that’s not roughly unimodal and symmetric. Then:

u Regardless of the shape of the original population, the shape of the distribution of the means of
all possible samples can be described by a Normal model, provided the samples are large
enough.

u The center of the sampling model will be the true mean of the population from which we took
the sample.

u The standard deviation of the sample means is the population’s standard deviation divided by
the square root of the sample size, .

Terms
Sampling distribution 413. Different random samples give different values for a statistic. The sampling distribution model 

model shows the behavior of the statistic over all the possible samples for the same size n.

Sampling variability 414. The variability we expect to see from one random sample to another. It is sometimes called 
Sampling error sampling error, but sampling variability is the better term.

Sampling distribution 416. If assumptions of independence and random sampling are met, and we expect at least 
model for a proportion 10 successes and 10 failures, then the sampling distribution of a proportion is modeled by a Normal

model with a mean equal to the true proportion value, p, and a standard deviation equal to .

Central Limit Theorem 421. The Central Limit Theorem (CLT) states that the sampling distribution model of the sample
mean (and proportion) from a random sample is approximately Normal for large n, regardless of the
distribution of the population, as long as the observations are independent.

Sampling distribution 423. If assumptions of independence and random sampling are met, and the sample size is large 
model for a mean enough, the sampling distribution of the sample mean is modeled by a Normal model with a mean 

equal to the population mean, , and a standard deviation equal to .

Skills
u Understand that the variability of a statistic (as measured by the standard deviation of its sam-

pling distribution) depends on the size of the sample. Statistics based on larger samples are less
variable.

u Understand that the Central Limit Theorem gives the sampling distribution model of the mean
for sufficiently large samples regardless of the underlying population.

u Be able to demonstrate a sampling distribution by simulation.

u Be able to use a sampling distribution model to make simple statements about the distribution
of a proportion or mean under repeated sampling.

u Be able to interpret a sampling distribution model as describing the values taken by a statistic in
all possible realizations of a sample or randomized experiment under the same conditions.
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