
Ingots are huge pieces of metal, often weighing more than 20,000 pounds,
made in a giant mold. They must be cast in one large piece for use in fabricat-
ing large structural parts for cars and planes. If they crack while being made,
the crack can propagate into the zone required for the part, compromising its

integrity. Airplane manufacturers insist that metal for their planes be defect-free,
so the ingot must be made over if any cracking is detected.

Even though the metal from the cracked ingot is recycled, the scrap cost runs
into the tens of thousands of dollars. Metal manufacturers would like to avoid
cracking if at all possible. But the casting process is complicated and not every-
thing is completely under control. In one plant, only about 80% of the ingots have
been free of cracks. In an attempt to reduce the cracking proportion, the plant en-
gineers and chemists recently tried out some changes in the casting process. Since
then, 400 ingots have been cast and only 17% of them have cracked. Should man-
agement declare victory? Has the cracking rate really decreased, or was 17% just
due to luck?

We can treat the 400 ingots cast with the new method as a random sample. We
know that each random sample will have a somewhat different proportion of
cracked ingots. Is the 17% we observe merely a result of natural sampling vari-
ability, or is this lower cracking rate strong enough evidence to assure manage-
ment that the true cracking rate now is really below 20%?

People want answers to questions like these all the time. Has the president’s
approval rating changed since last month? Has teenage smoking decreased in the
past five years? Is the global temperature increasing? Did the Super Bowl ad we
bought actually increase sales? To answer such questions, we test hypotheses about
models.

Hypotheses
How can we state and test a hypothesis about ingot cracking? Hypotheses are
working models that we adopt temporarily. To test whether the changes made by
the engineers have improved the cracking rate, we assume that they have in fact
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CHAPTER

20
Testing Hypotheses
About Proportions

“Half the money I spend on
advertising is wasted; the
trouble is I don’t know which
half.”

—John Wanamaker
(attributed)

Activity: Testing a Claim.
Can we really draw a reasonable
conclusion from a random
sample? Run this simulation
before you read the chapter, and
you’ll gain a solid sense of what
we’re doing here.
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460 CHAPTER 20    Testing Hypotheses About Proportions

made no difference and that any apparent improvement is just random fluctuation
(sampling error). So, our starting hypothesis, called the null hypothesis, is that
the proportion of cracks is still 20%.

The null hypothesis, which we denote , specifies a population model pa-
rameter of interest and proposes a value for that parameter. We usually write
down the null hypothesis in the form . This is a
concise way to specify the two things we need most: the identity of the parameter
we hope to learn about and a specific hypothesized value for that parameter. (We
need a hypothesized value so we can compare our observed statistic value to it.)

Which value to use is often obvious from the Who and What of the data. But
sometimes it takes a bit of thinking to translate the question we hope to answer
into a hypothesis about a parameter. For the ingots we can write 

The alternative hypothesis, which we denote , contains the values of the pa-
rameter that we consider plausible if we reject the null hypothesis. In the ingots ex-
ample, our null hypothesis is that What’s the alternative? Management
is interested in reducing the cracking rate, so their alternative is 

What would convince you that the cracking rate had actually gone down? If
you observed a cracking rate much lower than 20% in your sample, you’d likely be
convinced. If only 3 out of the next 400 ingots crack (for a rate of 0.75%), most
folks would conclude that the changes helped. But if the sample cracking rate is
only slightly lower than 20%, you should be skeptical. After all, observed propor-
tions do vary, so we wouldn’t be surprised to see some difference. How much
smaller must the cracking rate be before we are convinced that it has changed?
Whenever we ask about the size of a statistical difference, we naturally think of
using the standard deviation as a ruler. So let’s start by finding the standard devi-
ation of the sample cracking rate.

Since the company changed the process, 400 new ingots have been cast. The
sample size of 400 is big enough to satisfy the Success/Failure Condition. (We ex-
pect ingots to crack.) We have no reason to think the ingots are
not independent, so the Normal sampling distribution model should work well.
The standard deviation of the sampling model is

SD1pN2 = A
pq

n
= A

10.20210.802

400
= 0.02

0.20 * 400 = 80

HA: p 6 0.20.
p = 0.20.

HA

H0: p = 0.20.

H0: parameter = hypothesized value

H0

Why is this a standard deviation and not a standard error? Because
we haven’t estimated anything. When we assume that the null hypothesis is true, it
gives us a value for the model parameter p. With proportions, if we know p, then
we also automatically know its standard deviation. And because we find the stan-
dard deviation from the model parameter, this is a standard deviation and not a
standard error. When we found a confidence interval for p, we could not assume
that we knew its value, so we estimated the standard deviation from the sample
value .pN

Hypothesis n.; 
pl. {Hypotheses}.

A supposition; a
proposition or principle
which is supposed or taken
for granted, in order to draw
a conclusion or inference 
for proof of the point in
question; something not
proved, but assumed for the
purpose of argument.
—Webster’s Unabridged
Dictionary, 1913

To remind us that the
parameter value comes from
the null hypothesis, it is
sometimes written as and
the standard deviation as

SD1pN2 = A
p0q0

n
.

p0

Now we know both parameters of the Normal sampling distribution model:
and , so we can find out how likely it would be to see the ob-

served value of . Since we are using a Normal model, we find the z-score:

Then we ask, “How likely is it to observe a value at least 1.5 standard deviations
below the mean of a Normal model?” The answer (from a calculator, computer
program, or the Normal table) is about 0.067. This is the probability of observing
a cracking rate of 17% or less in a sample of 400 if the null hypothesis is true.

z =

0.17 - 0.20
0.02

= -1.5

pN = 17%
SD1pN2 = 0.02p = 0.20

NOTATION ALERT:

Capital H is the standard letter
for hypotheses. always labels
the null hypothesis, and 
labels the alternative
hypothesis.

HA

H0
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Management now must decide whether an event that would happen 6.7% of the
time by chance is strong enough evidence to conclude that the true cracking pro-
portion has decreased.

0 1 2 3–1–2–3

–1.5

0.067

FIGURE 20.1
How likely is a z-score of
–1.5 (or lower)? This is
what it looks like. The red
area is 0.067 of the total
area under the curve.

A Trial as a Hypothesis Test
Does the reasoning of hypothesis tests seem backward? That could be because
we usually prefer to think about getting things right rather than getting them
wrong. You have seen this reasoning before in a different context. This is the logic
of jury trials.

Let’s suppose a defendant has been accused of robbery. In British common
law and those systems derived from it (including U.S. law), the null hypothesis is
that the defendant is innocent. Instructions to juries are quite explicit about this.

The evidence takes the form of facts that seem to contradict the presumption
of innocence. For us, this means collecting data. In the trial, the prosecutor pres-
ents evidence. (“If the defendant were innocent, wouldn’t it be remarkable that
the police found him at the scene of the crime with a bag full of money in his
hand, a mask on his face, and a getaway car parked outside?”)

The next step is to judge the evidence. Evaluating the evidence is the respon-
sibility of the jury in a trial, but it falls on your shoulders in hypothesis testing.
The jury considers the evidence in light of the presumption of innocence and
judges whether the evidence against the defendant would be plausible if the defen-
dant were in fact innocent.

Like the jury, you ask, “Could these data plausibly have happened by chance
if the null hypothesis were true?” If they are very unlikely to have occurred, then
the evidence raises a reasonable doubt about the null hypothesis.

Ultimately, you must make a decision. The standard of “beyond a reasonable
doubt” is wonderfully ambiguous because it leaves the jury to decide the degree
to which the evidence contradicts the hypothesis of innocence. Juries don’t explic-
itly use probability to help them decide whether to reject that hypothesis. But
when you ask the same question of your null hypothesis, you have the advantage
of being able to quantify exactly how surprising the evidence would be were the
null hypothesis true.

How unlikely is unlikely? Some people set rigid standards, like 1 time out of
20 (0.05) or 1 time out of 100 (0.01). But if you have to make the decision, you must
judge for yourself in each situation whether the probability of observing your
data is small enough to constitute “reasonable doubt.”

P-Values
The fundamental step in our reasoning is the question “Are the data surprising,
given the null hypothesis?” And the key calculation is to determine exactly how
likely the data we observed would be were the null hypothesis a true model of
the world. So we need a probability. Specifically, we want to find the probability
of seeing data like these (or something even less likely) given that the null hy-
pothesis is true. Statisticians are so thrilled with their ability to measure precisely

Activity: The Reasoning of
Hypothesis Testing. Our reasoning
is based on a rule of logic that
dates back to ancient scholars.
Here’s a modern discussion of it.
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how surprised they are that they give this probability a special
name. It’s called a P-value.1

When the P-value is high, we haven’t seen anything un-
likely or surprising at all. Events that have a high probability of
happening happen often. The data are thus consistent with the
model from the null hypothesis, and we have no reason to reject
the null hypothesis. But we realize that many other similar hy-
potheses could also account for the data we’ve seen, so we
haven’t proven that the null hypothesis is true. The most we can say

is that it doesn’t appear to be false. Formally, we “fail to reject” the null hypothe-
sis. That’s a pretty weak conclusion, but it’s all we’re entitled to.

When the P-value is low enough, it says that it’s very unlikely we’d observe
data like these if our null hypothesis were true. We started with a model. Now
that model tells us that the data we have are unlikely to have happened. The
model and data are at odds with each other, so we have to make a choice. Either
the null hypothesis is correct and we’ve just seen something remarkable, or the
null hypothesis is wrong, and we were wrong to use it as the basis for computing
our P-value. Perhaps another model is correct, and the data really aren’t that re-
markable after all. If you believe in data more than in assumptions, then, given
that choice, you should reject the null hypothesis.

What to Do with an “Innocent” Defendant
If the evidence is not strong enough to reject the defendant’s presumption of in-
nocence, what verdict does the jury return? They say “not guilty.” Notice that
they do not say that the defendant is innocent. All they say is that they have not
seen sufficient evidence to convict, to reject innocence. The defendant may, in fact,
be innocent, but the jury has no way to be sure.

Said statistically, the jury’s null hypothesis is : innocent defendant. If the
evidence is too unlikely given this assumption, the jury rejects the null hypothesis
and finds the defendant guilty. But—and this is an important distinction—if there
is insufficient evidence to convict the defendant, the jury does not decide that is
true and declare the defendant innocent. Juries can only fail to reject the null hy-
pothesis and declare the defendant “not guilty.”

In the same way, if the data are not particularly unlikely under the assump-
tion that the null hypothesis is true, then the most we can do is to “fail to reject”
our null hypothesis. We never declare the null hypothesis to be true (or “accept”
the null), because we simply do not know whether it’s true or not. (After all, more
evidence may come along later.)

In the trial, the burden of proof is on the prosecution. In a hypothesis test, the
burden of proof is on the unusual claim. The null hypothesis is the ordinary state
of affairs, so it’s the alternative to the null hypothesis that we consider unusual
and for which we must marshal evidence.

Imagine a clinical trial testing the effectiveness of a new headache remedy. In
Chapter 13 we saw the value of comparing such treatments to a placebo. The null
hypothesis, then, is that the new treatment is no more effective than the placebo.
This is important, because some patients will improve even when administered
the placebo treatment. If we use only six people to test the drug, the results are
likely not to be clear and we’ll be unable to reject the hypothesis. Does this mean
the drug doesn’t work? Of course not. It simply means that we don’t have enough

H0

H0
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1 You’d think if they were so excited, they’d give it a better name, but “P-value” is about as
excited as statisticians get.

Beyond a Reasonable Doubt
We ask whether the data were unlikely beyond a
reasonable doubt. We’ve just calculated that
probability.The probability that the observed
statistic value (or an even more extreme value)
could occur if the null model were true—in this
case, 0.067—is the P-value.

NOTATION ALERT:

We have many P’s to keep
straight. We use an uppercase P
for probabilities, as in P(A), and
for the special probability we
care about in hypothesis
testing, the P-value.

We use lowercase p to
denote our model’s underlying
proportion parameter and to
denote our observed proportion
statistic.

pN

“If the People fail to satisfy their
burden of proof, you must find
the defendant not guilty.”

—NY state jury
instructions

Don’t “Accept” the Null
Hypothesis
Every child knows that he (or
she) is at the “center of the
universe,” so it’s natural to
suppose that the sun
revolves around the earth.
The fact that the sun appears
to rise in the east every
morning and set in the west
every evening is consistent
with this hypothesis and
seems to lend support to it,
but it certainly doesn’t prove
it, as we all eventually come
to understand.
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“The null hypothesis is never
proved or established, but is
possibly disproved, in the
course of experimentation.
Every experiment may be said
to exist only in order to give
the facts a chance of disproving
the null hypothesis.”

—Sir Ronald Fisher, The
Design of Experiments

The Reasoning of Hypothesis Testing 463

evidence to reject our assumption. That’s why we don’t start by assuming that the
drug is more effective. If we were to do that, then we could test just a few people,
find that the results aren’t clear, and claim that since we’ve been unable to reject
our original assumption the drug must be effective. The FDA is unlikely to be im-
pressed by that argument.

JUST CHECKING
1. A research team wants to know if aspirin helps to thin blood. The null hypothesis says that it doesn’t. They test 

12 patients, observe the proportion with thinner blood, and get a P-value of 0.32. They proclaim that aspirin 
doesn’t work. What would you say?

2. An allergy drug has been tested and found to give relief to 75% of the patients in a large clinical trial. Now the sci-
entists want to see if the new, improved version works even better. What would the null hypothesis be?

3. The new drug is tested and the P-value is 0.0001. What would you conclude about the new drug?

The Reasoning of Hypothesis Testing
Hypothesis tests follow a carefully structured path. To avoid getting lost as we
navigate down it, we divide that path into four distinct sections.

1. Hypotheses
First we state the null hypothesis. That’s usually the skeptical claim that noth-
ing’s different. Are we considering a (New! Improved!) possibly better method?
The null hypothesis says, “Oh yeah? Convince me!” To convert a skeptic, we
must pile up enough evidence against the null hypothesis that we can reason-
ably reject it.

In statistical hypothesis testing, hypotheses are almost always about model
parameters. To assess how unlikely our data may be, we need a null model. The
null hypothesis specifies a particular parameter value to use in our model. In the
usual shorthand, we write . The alternative hy-
pothesis, , contains the values of the parameter we consider plausible when
we reject the null.

HA

H0: parameter = hypothesized value

Writing hypothesesFOR EXAMPLE

A large city’s Department of Motor Vehicles claimed that 80% of candidates pass driving tests, but a newspaper reporter’s survey of 90 randomly se-
lected local teens who had taken the test found only 61 who passed.

Question: Does this finding suggest that the passing rate for teenagers is lower than the DMV reported? Write appropriate hypotheses.

I’ll assume that the passing rate for teenagers is the same as the DMV’s overall rate of 80%, unless there’s strong
evidence that it’s lower.

HA: p 6 0.80
H0: p = 0.80

Some folks pronounce the
hypothesis labels “Ho!” and
“Ha!” (but it makes them
seem overexcitable). We
prefer to pronounce 
“H naught” (as in “all is 
for naught”).

H0
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Checking the conditionsFOR EXAMPLE

Recap: A large city’s DMV claimed that 80% of candidates pass driving tests. A reporter has results from a survey of 90 randomly selected local teens
who had taken the test.

Question: Are the conditions for inference satisfied?

Ç The 90 teens surveyed were a random sample of local teenage driving candidates.
Ç 90 is fewer than 10% of the teenagers who take driving tests in a large city.
Ç We expect successes and failures. Both are at least 10.

The conditions are satisfied, so it’s okay to use a Normal model and perform a one-proportion z-test.

nq0 = 90(0.20) = 18np0 = 90(0.80) = 72

Activity: Was the
Observed Outcome Unlikely?
Complete the test you started in
the first activity for this chapter.
The narration explains the steps
of the hypothesis test.

464 CHAPTER 20    Testing Hypotheses About Proportions

2 It’s also called the “one-sample test for a proportion.”

ONE-PROPORTION z-TEST
The conditions for the one-proportion z-test are the same as for the 
one-proportion z-interval. We test the hypothesis using the 

statistic . We use the hypothesized proportion to find the

standard deviation, .

When the conditions are met and the null hypothesis is true, this statistic
follows the standard Normal model, so we can use that model to obtain a 
P-value.

SD1pN2 = A
p0q0

n

z =

1pN - p02

SD1pN2

H0: p = p0

2. Model
To plan a statistical hypothesis test, specify the model you will use to test the null
hypothesis and the parameter of interest. Of course, all models require assump-
tions, so you will need to state them and check any corresponding conditions.

Your Model step should end with a statement such as

Because the conditions are satisfied, I can model the sampling distribution of the propor-
tion with a Normal model.

Watch out, though. Your Model step could end with

Because the conditions are not satisfied, I can’t proceed with the test. (If that’s the case,
stop and reconsider.)

Each test in the book has a name that you should include in your report. We’ll
see many tests in the chapters that follow. Some will be about more than one sam-
ple, some will involve statistics other than proportions, and some will use models
other than the Normal (and so will not use z-scores). The test about proportions is
called a one-proportion z-test.2

When the Conditions Fail . . .
You might proceed with
caution, explicitly stating
your concerns. Or you may
need to do the analysis with
and without an outlier, or on
different subgroups, or after
re-expressing the response
variable. Or you may not be
able to proceed at all.

3. Mechanics
Under “Mechanics,” we place the actual calculation of our test statistic from the
data. Different tests we encounter will have different formulas and different test
statistics. Usually, the mechanics are handled by a statistics program or calcula-
tor, but it’s good to have the formulas recorded for reference and to know what’s

Conditional Probability
Did you notice that a P-value
is a conditional probability?
It’s the probability that the
observed results could 
have happened if the null
hypothesis is true.
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being computed. The ultimate goal of the calculation is to obtain a P-value—the
probability that the observed statistic value (or an even more extreme value) oc-
cur if the null model is correct. If the P-value is small enough, we’ll reject the null
hypothesis.

Finding a P-valueFOR EXAMPLE

Recap: A large city’s DMV claimed that 80% of candidates pass driving tests, but a survey of 90 randomly selected local teens who had taken the test
found only 61 who passed.

Question: What’s the P-value for the one-proportion z-test?

I have , and a hypothesized p = 0.80.n = 90, x = 61

P-value = P(z 6 -2.90) = 0.002

z =

pN - p0

SD(pN)
=

0.678 - 0.800
0.042

L -2.90

SD(pN) = A
p0q0

n
= A

(0.8)(0.2)
90

L 0.042

pN =

61
90

L 0.678

0.674 0.716 0.758 0.8 0.842 0.884 0.926

0.002

0.678

4. Conclusion
The conclusion in a hypothesis test is always a statement about the null hypothe-
sis. The conclusion must state either that we reject or that we fail to reject the null
hypothesis. And, as always, the conclusion should be stated in context.

Stating the conclusionFOR EXAMPLE

Recap: A large city’s DMV claimed that 80% of candidates pass driving tests. Data from a reporter’s survey of randomly selected local teens who had
taken the test produced a P-value of 0.002.

Question: What can the reporter conclude? And how might the reporter explain what the P-value means for the newspaper story?

Because the P-value of 0.002 is very low, I reject the null hypothesis. These survey data provide strong evidence that
the passing rate for teenagers taking the driving test is lower than 80%.
If the passing rate for teenage driving candidates were actually 80%, we’d expect to see success rates this low in only
about 1 in 500 samples (0.2%). This seems quite unlikely, casting doubt that the DMV’s stated success rate applies
to teens.

Your conclusion about the null hypothesis should never be the end of a test-
ing procedure. Often there are actions to take or policies to change. In our ingot
example, management must decide whether to continue the changes proposed by
the engineers. The decision always includes the practical consideration of
whether the new method is worth the cost. Suppose management decides to re-
ject the null hypothesis of 20% cracking in favor of the alternative that the per-
centage has been reduced. They must still evaluate how much the cracking rate
has been reduced and how much it cost to accomplish the reduction. The size of
the effect is always a concern when we test hypotheses. A good way to look at the
effect size is to examine a confidence interval.

“. . . They make things
admirably plain, 
But one hard question will
remain: 
If one hypothesis you lose,
Another in its place you 
choose . . .”

—James Russell Lowell,
Credidimus Jovem

Regnare
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How much does it cost? Formal tests of a null hypothesis base the decision
of whether to reject the null hypothesis solely on the size of the P-value. But in real
life, we want to evaluate the costs of our decisions as well. How much would you
be willing to pay for a faster computer? Shouldn’t your decision depend on how
much faster? And on how much more it costs? Costs are not just monetary either.
Would you use the same standard of proof for testing the safety of an airplane as for
the speed of your new computer?

3 It is also called a two-tailed alternative, because the probabilities we care about are found
in both tails of the sampling distribution.

Alternative Alternatives
Tests on the ingot data can be viewed in two different ways. We know the old
cracking rate is 20%, so the null hypothesis is

But we have a choice of alternative hypotheses. A metallurgist working for
the company might be interested in any change in the cracking rate due to the new
process. Even if the rate got worse, she might learn something useful from it.
She’s interested in possible changes on both sides of the null hypothesis. So she
would write her alternative hypothesis as

An alternative hypothesis such as this is known
as a two-sided alternative,3 because we are equally
interested in deviations on either side of the null hy-
pothesis value. For two-sided alternatives, the P-value
is the probability of deviating in either direction from
the null hypothesis value.

But management is really interested only in low-
ering the cracking rate below 20%. The scientific value
of knowing how to increase the cracking rate may not

appeal to them. The only alternative of interest to them is that the cracking rate
decreases. They would write their alternative hypothesis as

An alternative hypothesis that focuses on devia-
tions from the null hypothesis value in only one direc-
tion is called a one-sided alternative.

For a hypothesis test with a one-sided alternative,
the P-value is the probability of deviating only in the
direction of the alternative away from the null hypothe-
sis value. For the same data, the one-sided P-value is
half the two-sided P-value. So, a one-sided test will
reject the null hypothesis more often. If you aren’t

sure which to use, a two-sided test is always more conservative. Be sure you can
justify the choice of a one-sided test from the Why of the situation.

HA: p 6 0.20

HA: p Z 0.20

H0: p = 0.20

0.2 0.22 0.24 0.260.180.160.14

0.17 0.23

0.067 0.067

0.2 0.22 0.24 0.260.180.160.14

0.17

0.067

Activity: the Alternative
Hypotheses. This interactive tool
provides easy ways to visualize
how one- and two-tailed
alternative hypotheses work.
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Anyone who plays or watches sports has heard of the “home field advantage.” Teams tend to win
more often when they play at home. Or do they?

If there were no home field advantage, the home teams would win about half of all games
played. In the 2007 Major League Baseball season, there were 2431 regular-season games. (Tied at
the end of the regular season, the Colorado Rockies and San Diego Padres played an extra game
to determine who won the Wild Card playoff spot.) It turns out that the home team won 1319 of
the 2431 games, or 54.26% of the time.

Question: Could this deviation from 50% be explained just from natural sampling variability, or is
it evidence to suggest that there really is a home field advantage, at least in professional baseball?

Testing a HypothesisSTEP-BY-STEP EXAMPLE

I want to know whether the home team in pro-
fessional baseball is more likely to win. The data
are all 2431 games from the 2007 Major
League Baseball season. The variable is whether
or not the home team won. The parameter of
interest is the proportion of home team wins. If
there’s no advantage, I’d expect that propor-
tion to be 0.50.

Plan State what we want to know.

Define the variables and discuss the W’s.

Hypotheses The null hypothesis makes
the claim of no difference from the base-
line. Here, that means no home field
advantage.

Ç Independence Assumption: Generally, the
outcome of one game has no effect on the
outcome of another game. But this may
not be strictly true. For example, if a key
player is injured, the probability that the
team will win in the next couple of games
may decrease slightly, but independence is
still roughly true. The data come from one
entire season, but I expect other seasons
to be similar.

Ç Randomization Condition: I have results
for all 2431 games of the 2007 season.
But I’m not just interested in 2007, and
those games, while not randomly selected,
should be a reasonable representative
sample of all Major League Baseball games
in the recent past and near future.

Ç 10% Condition: We are interested in home
field advantage for Major League Baseball
for all seasons. While not a random sample,
these 2431 games are fewer than 10% of
all games played over the years.

Ç Success/Failure Condition: Both
and
are at 

least 10.
nq0 = 2431(0.50) = 1215.5
np0 = 2431(0.50) = 1215.5

HA: p 7 0.50
H0: p = 0.50We are interested only in a home field

advantage, so the alternative hypothesis is
one-sided.

Model Think about the assumptions and
check the appropriate conditions.

Activity: Practice with
Testing Hypotheses About
Proportions. Here’s an interactive
tool that makes it easy to see
what’s going on in a hypothesis
test.
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The null model is a Normal distribution with a
mean of 0.50 and a standard deviation of

 = 0.01014

 SD(pN) = A
p0q0

n = A
(0.5)(1 - 0.5)

2431

Mechanics The null model gives us the
mean, and (because we are working with
proportions) the mean gives us the stan-
dard deviation.

The observed proportion, , is 0.5426.

So the z-value is

The sample proportion lies 4.20 standard devi-
ations above the mean.

z =

0.5426 - 0.5
0.01014

= 4.20

pNNext, we find the z-score for the observed
proportion, to find out how many stan-
dard deviations it is from the hypothesized
proportion.

From the z-score, we can find the P-value,
which tells us the probability of observ-
ing a value that extreme (or more).

The probability of observing a value 4.20
or more standard deviations above the
mean of a Normal model can be found 
by computer, calculator, or table to be

.6  0.001

Because the conditions are satisfied, I’ll use a
Normal model for the sampling distribution of
the proportion and do a one-proportion z-test.

Specify the sampling distribution model.

State what test you plan to use.

The P-value of says that if the true
proportion of home team wins were 0.50, then
an observed value of 0.5426 (or larger) would
occur less than 1 time in 1000. With a P-value
so small, I reject . I have evidence that the
true proportion of home team wins is not 50%.
It appears there is a home field advantage.

H0

6 0.001Conclusion State your conclusion about
the parameter—in context, of course!

0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

0.9360.5426

The corresponding P-value is .6 0.001

Ok, but how big is the home field advantage? Measuring the size of the effect in-
volves a confidence interval. (Use your calculator.)

TI Tips Testing a hypothesis

By now probably nothing surprises you about your calculator. Of course it can
help you with the mechanics of a hypothesis test. But that’s not much. It can-
not write the correct hypotheses, check the appropriate conditions, interpret
the results, or state a conclusion. You have to do the tough stuff!
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Let’s do the mechanics of the Step-By-Step example about home field advantage
in baseball. We hypothesized that home teams would win 50% of all games, but
during this  2431-game season they actually won 54.26% of the time.

• Go to the STAT TESTS menu. Scroll down the list and select 
5:1-Prop ZTest.

• Specify the hypothesized proportion p„.
• Enter x, the observed number of wins: 1319.
• Specify the sample size.
• Since this is a one-tail upper tail test, indicate that you want to see if the ob-

served proportion is significantly greater than what was hypothesized.
• Calculate the result.

Ok, the rest is up to you. The calculator reports a z-score of 4.20 and a P-value
(in scientific notation) of , or about 0.00001. Such a small P-value in-
dicates that the high percentage of home team wins is highly unlikely to be
sampling error. State your conclusion in the appropriate context.

And how big is the advantage for the home team? In the last chapter you
learned to create a 95% confidence interval. Try it here.

Looks like we can be 95% confident that in major league baseball games the
home team wins between 52.3% and 56.2% of the time. Over a full season, the
low end of this interval, 52.3% of the 81 home games, is nearly 2 extra victories,
on average. The upper end, 56.2%, is 5 extra wins.

1.35 * 10-5

P-Values and Decisions: What to Tell About 
a Hypothesis Test

Hypothesis tests are particularly useful when we must make a decision. Is the
defendant guilty or not? Should we choose print advertising or television? Ques-
tions like these cannot always be answered with the margins of error of confi-
dence intervals. The absolute nature of the hypothesis test decision, however,
makes some people (including the authors) uneasy. If possible, it’s often a good
idea to report a confidence interval for the parameter of interest as well.

How small should the P-value be in order for you to reject the null hypothe-
sis? A jury needs enough evidence to show the defendant guilty “beyond a rea-
sonable doubt.” How does that translate to P-values? The answer is that it’s
highly context-dependent. When we’re screening for a disease and want to be
sure we treat all those who are sick, we may be willing to reject the null hypothesis
of no disease with a P-value as large as 0.10. We would rather treat the occasional
healthy person than fail to treat someone who was really sick. But a long-standing
hypothesis, believed by many to be true, needs stronger evidence (and a corre-
spondingly small P-value) to reject it.

See if you require the same P-value to reject each of the following null 
hypotheses:

u A renowned musicologist claims that she can distinguish between the works
of Mozart and Haydn simply by hearing a randomly selected 20 seconds of
music from any work by either composer. What’s the null hypothesis? If
she’s just guessing, she’ll get 50% of the pieces correct, on average. So our
null hypothesis is that p is 50%. If she’s for real, she’ll get more than 50% cor-
rect. Now, we present her with 10 pieces of Mozart or Haydn chosen at ran-
dom. She gets 9 out of 10 correct. It turns out that the P-value associated with

MORE
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that result is 0.011. (In other words, if you tried to just guess, you’d get at least
9 out of 10 correct only about 1% of the time.) What would you conclude?
Most people would probably reject the null hypothesis and be convinced that
she has some ability to do as she claims. Why? Because the P-value is small
and we don’t have any particular reason to doubt the alternative.

u On the other hand, imagine a student who bets that he can make a flipped
coin land the way he wants just by thinking hard. To test him, we flip a fair
coin 10 times. Suppose he gets 9 out of 10 right. This also has a P-value of
0.011. Are you willing now to reject this null hypothesis? Are you convinced
that he’s not just lucky? What amount of evidence would convince you? We
require more evidence if rejecting the null hypothesis would contradict long-
standing beliefs or other scientific results. Of course, with sufficient evidence
we would revise our opinions (and scientific theories). That’s how science
makes progress.

Another factor in choosing a P-value is the importance of the issue being tested.
Consider the following two tests:

u A researcher claims that the proportion of college students who hold part-
time jobs now is higher than the proportion known to hold such jobs a decade
ago. You might be willing to believe the claim (and reject the null hypothesis
of no change) with a P-value of 10%.

u An engineer claims that the proportion of rivets holding the wing on an
airplane that are likely to fail is below the proportion at which the wing
would fall off. What P-value would be small enough to get you to fly on
that plane?

Your conclusion about any null hypothesis should be accompanied by the P-
value of the test. Don’t just declare the null hypothesis rejected or not rejected. Re-
port the P-value to show the strength of the evidence against the hypothesis and
the effect size. This will let each reader decide whether or not to reject the null hy-
pothesis and whether or not to consider the result important if it is statistically
significant.

To complete your analysis, follow your test with a confidence interval for
the parameter of interest, to report the size of the effect.

Activity: Hypothesis Tests
for Proportions. You’ve probably
noticed that the tools for
confidence intervals and for
hypothesis tests are similar. See
how tests and intervals for
proportions are related—and an
important way in which they
differ.

“Extraordinary claims require
extraordinary proof.”

—Carl Sagan

JUST CHECKING
4. A bank is testing a new method for getting delinquent customers to pay their past-due credit card

bills. The standard way was to send a letter (costing about $0.40) asking the customer to pay. That
worked 30% of the time. They want to test a new method that involves sending a DVD to cus-
tomers encouraging them to contact the bank and set up a payment plan. Developing and sending
the video costs about $10.00 per customer. What is the parameter of interest? What are the null and
alternative hypotheses?

5. The bank sets up an experiment to test the effectiveness of the DVD. They mail it out to several ran-
domly selected delinquent customers and keep track of how many actually do contact the bank to
arrange payments. The bank’s statistician calculates a P-value of 0.003. What does this P-value sug-
gest about the DVD?

6. The statistician tells the bank’s management that the results are clear and that they should switch to
the DVD method. Do you agree? What else might you want to know?
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Advances in medical care such as prenatal ultrasound examination now make it possible to deter-
mine a child’s sex early in a pregnancy.There is a fear that in some cultures some parents may use
this technology to select the sex of their children. A study from Punjab, India (E. E. Booth, M.
Verma, and R. S. Beri, “Fetal Sex Determination in Infants in Punjab, India: Correlations and Im-
plications,” BMJ 309 [12 November 1994]: 1259–1261), reports that, in 1993, in one hospital, 56.9%
of the 550 live births that year were boys. It’s a medical fact that male babies are slightly more
common than female babies. The study’s authors report a baseline for this region of 51.7% male
live births.

Question: Is there evidence that the proportion of male births has changed?

Tests and IntervalsSTEP-BY-STEP EXAMPLE

I want to know whether the proportion of male
births has changed from the established base-
line of 51.7%. The data are the recorded sexes
of the 550 live births from a hospital in Punjab,
India, in 1993, collected for a study on fetal sex
determination. The parameter of interest, p, is
the proportion of male births:

HA: p Z 0.517
H0: p = 0.517

Plan State what we want to know.

Define the variables and discuss the W’s.

Ç Independence Assumption: There is no rea-
son to think that the sex of one baby can
affect the sex of other babies, so births can
reasonably be assumed to be independent
with regard to the sex of the child.

Ç Randomization Condition: The 550 live
births are not a random sample, so I must
be cautious about any general conclusions.
I hope that this is a representative year,
and I think that the births at this hospital
may be typical of this area of India.

Ç 10% Condition: I would like to be able to
make statements about births at similar
hospitals in India. These 550 births are
fewer than 10% of all of those births.

Ç Success/Failure Condition: Both
and

are
greater than 10; I expect the births of at
least 10 boys and at least 10 girls, so the
sample is large enough.

nq0 = 550(0.483) = 265.65
np0 = 550(0.517) = 284.35

Hypotheses The null hypothesis makes
the claim of no difference from the 
baseline.

Before seeing the data, we were interested
in any change in male births, so the alter-
native hypothesis is two-sided.

Model Think about the assumptions and
check the appropriate conditions.

For testing proportions, the conditions are
the same ones we had for making confi-
dence intervals, except that we check the
Success/Failure Condition with the
hypothesized proportions rather than with
the observed proportions.

The conditions are satisfied, so I can use a
Normal model and perform a one-proportion 
z-test.

Specify the sampling distribution model.

Tell what test you plan to use.
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472 CHAPTER 20    Testing Hypotheses About Proportions

The null model is a Normal distribution with a
mean of 0.517 and a standard deviation of

The observed proportion, , is 0.569, so

z =

pN - p0

SD(pN)
=

0.569 - 0.517
0.0213

= 2.44

pN

 = 0.0213

 SD(pN) = A
p0q0

n
= A

(0.517)(1 - 0.517)
550

Mechanics The null model gives us the
mean, and (because we are working with
proportions) the mean gives us the stan-
dard deviation.

We find the z-score for the observed pro-
portion to find out how many standard
deviations it is from the hypothesized
proportion.

The sample proportion lies 2.44 standard devi-
ations above the mean.

Make a picture. Sketch a Normal model
centered at . Shade the region to
the right of the observed proportion, and
because this is a two-tail test, also shade
the corresponding region in the other tail.

From the z-score, we can find the P-value,
which tells us the probability of observ-
ing a value that extreme (or more). Use
technology or a table (see p. 473.).

Because this is a two-tail test, the P-value
is the probability of observing an out-
come more than 2.44 standard deviations
from the mean of a Normal model in ei-
ther direction. We must therefore double the
probability we find in the upper tail.

p0 = 0.517

P = 2P(z 7 2.44) = 2(0.0073) = 0.0146

0.007

0.453 0.474 0.496 0.517 0.538 0.560 0.581

p̂

0.569

The P-value of 0.0146 says that if the true
proportion of male babies were still at 51.7%,
then an observed proportion as different as
56.9% male babies would occur at random only
about 15 times in 1000. With a P-value this
small, I reject . This is strong evidence that
the birth ratio of boys to girls is not equal to
its natural level. It appears that the proportion
of boys may have increased.

HO

Conclusion State your conclusion in
context.

This P-value is roughly 1 time in 70.
That’s clearly significant, but don’t jump
to other conclusions. We can’t be sure
how this deviation came about. For in-
stance, we don’t know whether this
hospital is typical, or whether the time
period studied was selected at random.

AGAIN Ç Success/Failure Condition: Both 
and 

are at least 10.nqN = 237
npN = 550(0.569) = 313

Model Check the conditions.

The conditions are identical to those for
the hypothesis test, with one difference.
Now we are not given a hypothesized
proportion, , so we must instead work
with the observed proportion .pN

p0

How big an increase are we talking about? Let’s find a confidence interval for the proportion of male births.
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The conditions are satisfied, so I can model the
sampling distribution of the proportion with a
Normal model and find a one-proportion 
z-interval.

The sampling model is Normal, so for a 95%
confidence interval, the critical value .z* = 1.96

 = 0.0211

 SE(pN) = A
pNqN
n

= A
(0.569)(1 - 0.569)

550
Mechanics We can’t find the sampling
model standard deviation from the null
model proportion. (In fact, we’ve just re-
jected it.) Instead, we find the standard
error of from the observed proportions.
Other than that substitution, the calcula-
tion looks the same as for the hypothesis
test.

With this large a sample size, the differ-
ence is negligible, but in smaller samples,
it could make a bigger difference.

pN

MORE

We are 95% confident that the true proportion
of male births is between 52.8% and 61.0%.

Conclusion Confidence intervals help us
think about the size of the effect. Here we
can see that the change from the baseline
of 51.7% male births might be quite 
substantial.

ALL

The margin of error is

So the 95% confidence interval is

0.569 ; 0.041 or (0.528, 0.610).

ME = z* * SE(pN) = 1.96(0.0211) = 0.041

Specify the sampling distribution model.

Tell what method you plan to use.

Here’s a portion of a Normal table that gives the probability
we needed for the hypothesis test. At , the table gives the
percentile as 0.9927. The upper-tail probability (shaded red) is,
therefore, ; so, for our two-sided test, the 
P-value is .210.00732 = 0.0146

1 - 0.9927 = 0.0073

z = 2.44

–3s –2s –1s 1s 2s 3s0
z (hundredths)

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960

z 0.00 0.01 0.02 0.03 0.04 0.05
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WHAT CAN GO WRONG?
Hypothesis tests are so widely used—and so widely misused—that we’ve devoted all
of the next chapter to discussing the pitfalls involved, but there are a few issues that we
can talk about already.
u Don’t base your null hypotheses on what you see in the data. You are not allowed to look at

the data first and then adjust your null hypothesis so that it will be rejected. When
your sample value turns out to be , with a standard deviation of 1%, don’t
form a null hypothesis like , knowing that you can reject it. You
should always Think about the situation you are investigating and make your null
hypothesis describe the “nothing interesting” or “nothing has changed” scenario.
No peeking at the data!

u Don’t base your alternative hypothesis on the data, either. Again, you need to Think about
the situation. Are you interested only in knowing whether something has increased?
Then write a one-sided (upper-tail) alternative. Or would you be equally interested
in a change in either direction? Then you want a two-sided alternative. You should
decide whether to do a one- or two-sided test based on what results would be of in-
terest to you, not what you see in the data.

u Don’t make your null hypothesis what you want to show to be true. Remember, the null hy-
pothesis is the status quo, the nothing-is-strange-here position a skeptic would take.
You wonder whether the data cast doubt on that. You can reject the null hypothesis,
but you can never “accept” or “prove” the null.

u Don’t forget to check the conditions. The reasoning of inference depends on randomiza-
tion. No amount of care in calculating a test result can recover from biased sampling.
The probabilities we compute depend on the independence assumption. And our
sample must be large enough to justify our use of a Normal model.

u Don’t accept the null hypothesis. You may not have found enough evidence to reject it,
but you surely have not proven it’s true!

u If you fail to reject the null hypothesis, don’t think that a bigger sample would be more likely to lead
to rejection. If the results you looked at were “almost” significant, it’s enticing to think
that because you would have rejected the null had these same observations come from
a larger sample, then a larger sample would surely lead to rejection. Don’t be misled.
Remember, each sample is different, and a larger sample won’t necessarily duplicate
your current observations. Indeed, the Central Limit Theorem tells us that statistics will
vary less in larger samples. We should therefore expect such results to be less extreme.
Maybe they’d be statistically significant but maybe (perhaps even probably) not. Even
if you fail to reject the null hypothesis, it’s a good idea to examine a confidence interval.
If none of the plausible parameter values in the interval would matter to you (for ex-
ample, because none would be practically significant), then even a larger study with a
correspondingly smaller standard error is unlikely to be worthwhile.

H0: p = 49.8%
pN = 51.8%

CONNECTIONS
Hypothesis tests and confidence intervals share many of the same concepts. Both rely on sampling
distribution models, and because the models are the same and require the same assumptions, both
check the same conditions. They also calculate many of the same statistics. Like confidence inter-
vals, hypothesis tests use the standard deviation of the sampling distribution as a ruler, as we first
saw in Chapter 6.

For testing, we find ourselves looking once again at z-scores, and we compute the P-value by
finding the distance of our test statistic from the center of the null model. P-values are conditional
probabilities. They give the probability of observing the result we have seen (or one even more ex-
treme) given that the null hypothesis is true.

The Standard Normal model is here again as our connection between z-score values and 
probabilities.

Don’t We Want to Reject
the Null?
Often the folks who collect
the data or perform the
experiment hope to reject
the null. (They hope the
new drug is better than the
placebo, or new ad campaign
is better than the old one.) But
when we practice Statistics,
we can’t allow that hope 
to affect our decision.
The essential attitude for 
a hypothesis tester is
skepticism. Until we become
convinced otherwise, we
cling to the null’s assertion
that there’s nothing unusual,
no effect, no difference, etc.
As in a jury trial, the burden
of proof rests with the
alternative hypothesis—
innocent until proven guilty.
When you test a hypothesis,
you must act as judge and
jury, but you are not the
prosecutor.
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WHAT HAVE WE LEARNED?

We’ve learned to use what we see in a random sample to test a particular hypothesis about the
world. This is our second step in statistical inference, complementing our use of confidence intervals.

We’ve learned that testing a hypothesis involves proposing a model, then seeing whether the
data we observe are consistent with that model or are so unusual that we must reject it. We do this
by finding a P-value—the probability that data like ours could have occurred if the model is correct.

We’ve learned that:

u We start with a null hypothesis specifying the parameter of a model we’ll test using our data.
u Our alternative hypothesis can be one- or two-sided, depending on what we want to learn.
u We must check the appropriate assumptions and conditions before proceeding with our test.
u If the data are out of line with the null hypothesis model, the P-value will be small and we will

reject the null hypothesis.
u If the data are consistent with the null hypothesis model, the P-value will be large and we will

not reject the null hypothesis.
u We must always state our conclusion in the context of the original question.

And we’ve learned that confidence intervals and hypothesis tests go hand in hand in helping us
think about models. A hypothesis test makes a yes/no decision about the plausibility of a parame-
ter value. The confidence interval shows us the range of plausible values for the parameter.

Terms
Null hypothesis 460. The claim being assessed in a hypothesis test is called the null hypothesis. Usually, the null

hypothesis is a statement of “no change from the traditional value,” “no effect,” “no difference,” or
“no relationship.” For a claim to be a testable null hypothesis, it must specify a value for some pop-
ulation parameter that can form the basis for assuming a sampling distribution for a test statistic.

Alternative hypothesis 460. The alternative hypothesis proposes what we should conclude if we find the null hypothesis to
be unlikely.

Two-sided alternative 466. An alternative hypothesis is two-sided when we are interested in deviations in
(Two-tailed alternative) either direction away from the hypothesized parameter value.

One-sided alternative 466. An alternative hypothesis is one-sided (e.g., ) when we are interested
(One-tailed alternative) in deviations in only one direction away from the hypothesized parameter value.

P-value 461. The probability of observing a value for a test statistic at least as far from the hypothesized
value as the statistic value actually observed if the null hypothesis is true. A small P-value indicates
either that the observation is improbable or that the probability calculation was based on incorrect
assumptions. The assumed truth of the null hypothesis is the assumption under suspicion.

One-proportion z-test 464. A test of the null hypothesis that the proportion of a single sample equals a specified value

( ) by referring the statistic to a Standard Normal model.

Skills
u Be able to state the null and alternative hypotheses for a one-proportion z-test.

u Know the conditions that must be true for a one-proportion z-test to be appropriate, and know
how to examine your data for violations of those conditions.

u Be able to identify and use the alternative hypothesis when testing hypotheses. Understand how
to choose between a one-sided and two-sided alternative hypothesis, and be able to explain your
choice.

u Be able to perform a one-proportion z-test.

u Be able to write a sentence interpreting the results of a one-proportion z-test.

u Know how to interpret the meaning of a P-value in nontechnical language, making clear that the
probability claim is made about computed values under the assumption that the null model is
true and not about the population parameter of interest.

z =

pN - p0

SD1pN2
H0: p = p0

HA: p 7 p0 or HA: p 6 p0

1HA: p Z p02
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