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CHAPTER

21
More About Tests 
and Intervals

In 2000 Florida changed its motorcycle helmet law. No longer are riders 
21 and older required to wear helmets. Under the new law, those under 
21 still must wear helmets, but a report by the Preusser Group (www
.preussergroup. com) suggests that helmet use may have declined in this

group, too.
It isn’t practical to survey young motorcycle riders. (For example, how can you

construct a sampling frame? If you contacted licensed riders, would they admit to
riding illegally without a helmet?) The researchers adopted a different strategy.
Police reports of motorcycle accidents record whether the rider wore a helmet and
give the rider’s age. Before the change in the helmet law, 60% of youths involved in
a motorcycle accident had been wearing their helmets. The Preusser study looked
at accident reports during 2001–2003, the three years following the law change, con-
sidering these riders to be a representative sample of the larger population. They
observed 781 young riders who were involved in accidents. Of these, 396 (or 50.7%)
were wearing helmets. Is this evidence of a decline in helmet-wearing, or just the
natural fluctuation of such statistics?

Zero In on the Null
Null hypotheses have special requirements. In order to perform a statistical test
of the hypothesis, the null must be a statement about the value of a parameter for
a model. We use this value to compute the probability that the observed sample
statistic—or something even farther from the null value—might occur.

How do we choose the null hypothesis? The appropriate null arises directly
from the context of the problem. It is dictated, not by the data, but by the situation.
One good way to identify both the null and alternative hypotheses is to think about
the Why of the situation. Typical null hypotheses might be that the proportion of
patients recovering after receiving a new drug is the same as we would expect of
patients receiving a placebo or that the mean strength attained by athletes training
with new equipment is the same as with the old equipment. The alternative hy-
potheses would be that the new drug cures a higher proportion of patients or that
the new equipment results in a greater mean strength.

WHO Florida motorcycle
riders aged 20 and
younger involved in
motorcycle accidents

WHAT % wearing helmets

WHEN 2001–2003

WHERE Florida

WHY Assessment of injury
rates commissioned 
by the National 
Highway Traffic 
Safety Administration
(NHTSA)
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Zero In on the Null 481

Writing hypothesesFOR EXAMPLE

The diabetes drug Avandia® was approved to treat Type 2 diabetes in 1999. But in 2007 an article in the New England Journal of Medicine (NEJM)1

raised concerns that the drug might carry an increased risk of heart attack. This study combined results from a number of other separate studies to
obtain an overall sample of 4485 diabetes patients taking Avandia. People with Type 2 diabetes are known to have about a 20.2% chance of suffering a
heart attack within a seven-year period. According to the article’s author, Dr. Steven E. Nissen,2 the risk found in the NEJM study was equivalent to a
28.9% chance of heart attack over seven years. The FDA is the government agency responsible for relabeling Avandia to warn of the risk if it is judged to
be unsafe. Although the statistical methods they use are more sophisticated, we can get an idea of their reasoning with the tools we have learned.

Question: What null hypothesis and alternative hypothesis about seven-year heart attack risk would you test? Explain.

The parameter of interest is the proportion of diabetes patients suffering a heart attack in seven years. The FDA is
concerned only with whether Avandia increases the seven-year risk of heart attacks above the baseline value of
20.2%, so a one-sided upper-tail test is appropriate.

HA: p 7 0.202
H0: p = 0.202

1 Steven E. Nissen, M.D., and Kathy Wolski, M.P.H., “Effect of Rosiglitazone on the Risk of
Myocardial Infarction and Death from Cardiovascular Causes,” NEJM 2007; 356.
2 Interview reported in the New York Times [May 26, 2007].

To write a null hypothesis, you can’t just choose any parameter value you like.
The null must relate to the question at hand. Even though the null usually means
no difference or no change, you can’t automatically interpret “null” to mean zero.
A claim that “nobody” wears a motorcycle helmet would be absurd. The null hy-
pothesis for the Florida study could be that the true rate of helmet use remained
the same among young riders after the law changed. You need to find the value for
the parameter in the null hypothesis from the context of the problem.

There is a temptation to state your claim as the null hypothesis. As we have
seen, however, you cannot prove a null hypothesis true any more than you can
prove a defendant innocent. So, it makes more sense to use what you want to
show as the alternative. This way, if you reject the null, you are left with what you
want to show.

One-sided or two? In the 1930s, a series of experiments was performed at
Duke University in an attempt to see whether humans were capable of extrasensory
perception, or ESP. Psychologist Karl Zener designed a set of cards with 5 symbols,
later made infamous in the movie Ghostbusters:

In the experiment, the “sender” selects one of the 5 cards at random from a deck
and then concentrates on it. The “receiver” tries to determine which card it is. If we
let p be the proportion of correct responses, what’s the null hypothesis? The null hy-
pothesis is that ESP makes no difference. Without ESP, the receiver would just be
guessing, and since there are 5 possible responses, there would be a 20% chance
of guessing each card correctly. So, is What’s the alternative? It seems
that it should be a one-sided alternative. But some ESP researchers have
expressed the claim that if the proportion guessed were much lower than expected,
that would show an “interference” and should be considered evidence for ESP as
well. So they argue for a two-sided alternative.

p 7 0.20,
p = 0.20.H0
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482 CHAPTER 21    More About Tests and Intervals

Let’s try to answer the question raised at the start of the chapter.

Question: Has helmet use in Florida declined among riders under the age of 21 subsequent to the
change in the helmet laws?

Another One-Proportion z-TestSTEP-BY-STEP EXAMPLE

I want to know whether the rate of helmet
wearing among Florida’s motorcycle riders 
under the age of 21 remained at 60% after the
law changed to allow older riders to go without
helmets. I have data from accident records
showing 396 of 781 young riders were wearing
helmets.

HA: p 6 0.60
H0: p = 0.60

Plan State the problem and discuss the
variables and the W’s.

Hypotheses The null hypothesis is es-
tablished by the rate set before the change
in the law. The study was concerned with
safety, so they’ll want to know of any 
decline in helmet use, making this a
lower-tail test.

Ç Independence Assumption: The data 
are for riders involved in accidents during 
a three-year period. Individuals are inde-
pendent of one another.

l Randomization Condition: No randomiza-
tion was applied, but we are considering
these riders involved in accidents to be a
representative sample of all riders. We should
take care in generalizing our conclusions.

Ç 10% Condition: These 781 riders are a
small sample of a larger population of all
young motorcycle riders.

Ç Success/Failure Condition: We’d expect
helmeted riders

and non-helmeted.
Both are at least 10.

nq = 78110.42 = 312.4
np = 78110.62 = 468.6

Model Check the conditions.

The Risky Behavior Surveillance survey is
in fact a complex, multistage sample, but
it is randomized and great effort is taken
to make it representative. It is safe to treat
it as though it were a random sample.

Specify the sampling distribution model
and name the test.

The conditions are satisfied, so I can use a
Normal model and perform a one-proportion
z-test.

Mechanics Find the standard deviation
of the sampling model using the hypothe-
sized proportion.

There were 396 helmet wearers among the 781 
accident victims.

z =

pN - p0

SD(pN)
=

0.507 - 0.60
0.0175

= -5.31

 SD(pN) = B
p0q0

n
= B

10.60210.402
781

= 0.0175

 pN =

396
781

= 0.507

Find the z-score for the observed 
proportion.
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How to Think About P-values 483

How to Think About P-values
A P-value actually is a conditional probability. It tells us the probability of getting re-
sults at least as unusual as the observed statistic, given that the null hypothesis is true.
We can write 

Writing the P-value this way helps to make clear that the P-value is not the
probability that the null hypothesis is true. It is a probability about the data. Let’s
say that again:

The P-value is not the probability that the null hypothesis is true.

The P-value is not even the conditional probability that the null hypothesis is
true given the data. We would write that probability as observed statistic
value). This is a conditional probability but in reverse. It would be nice to know
this, but it’s impossible to calculate without making additional assumptions. As
we saw in Chapter 15, reversing the order in a conditional probability is difficult,
and the results can be counterintuitive.

We can find the P-value, P(observed statistic ), because gives the
parameter values that we need to find the required probability. But there’s no direct
way to find observed statistic value).3 As tempting as it may be to say that 
a P-value of 0.03 means there’s a 3% chance that the null hypothesis is true, that just
isn’t right. All we can say is that, given the null hypothesis, there’s a 3% chance of
observing the statistic value that we have actually observed (or one more unlike the
null value).

P1H0|

H0value|H0

P1H0|

P-value = P1observed statistic value [or even more extreme]|H02.

3 The approach to statistical inference known as Bayesian Statistics addresses the question
in just this way, but it requires more advanced mathematics and more assumptions. See
p. 358 for more about the founding father of this approach.

The observed helmet rate is 5.31 standard devi-
ations below the former rate. The corresponding
P-value is less than 0.001.

Make a picture. Sketch a Normal model
centered at the hypothesized helmet rate
of 60%. This is a lower-tail test, so shade
the region to the left of the observed rate.

0.600.507 p

Given this z-score, the P-value is obvi-
ously very low.

Conclusion Link the P-value to your de-
cision about the null hypothesis, and then
state your conclusion in context.

The very small P-value says that if the true rate
of helmet-wearing among riders under 21 were
still 60%, the probability of observing a rate no
higher than 50.7% in a sample like this is less
than 1 chance in 1000, so I reject the null hy-
pothesis. There is strong evidence that there
has been a decline in helmet use among riders
under 21.

Which Conditional?
Suppose that as a political
science major you are offered
the chance to be a White
House intern.There would
be a very high probability
that next summer you’d be in
Washington, D.C.That is,
P(Washington | Intern) would
be high. But if we find a
student in Washington, D.C.,
is it likely that he’s a White
House intern? Almost surely
not; P(Intern | Washington) is
low.You can’t switch around
conditional probabilities.The
P-value is We
might wish we could report

but these two
quantities are NOT the same.
P1H0 | data2,

P1data | H02.
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484 CHAPTER 21    More About Tests and Intervals

Thinking about the P-valueFOR EXAMPLE

Recap: A New England Journal of Medicine paper reported that the seven-year risk of heart attack in diabetes patients taking the drug Avandia was
increased from the baseline of 20.2% to an estimated risk of 28.9% and said the P-value was 0.03.

Question: How should the P-value be interpreted in this context?

The . That is, it’s the probability of seeing such a high heart attack rate among
the people studied if, in fact, taking Avandia really didn’t increase the risk at all.

P-value = P(pN Ú 28.9% ƒ  p = 20.2%)

How guilty is the suspect? We might like to know but when
you think about it, we can’t talk about the probability that the null hypothesis is
true. The null is not a random event, so either it is true or it isn’t. The data, how-
ever, are random in the sense that if we were to repeat a randomized experiment or
draw another random sample, we’d get different data and expect to find a different
statistic value. So we can talk about the probability of the data given the null
hypothesis, and that’s the P-value.

But it does make sense that the smaller the P-value, the more confident we can be
in declaring that we doubt the null hypothesis. Think again about the jury trial. Our null
hypothesis is that the defendant is innocent. Then the evidence starts rolling in. A car
the same color as his was parked in front of the bank. Well, there are lots of cars that
color. The probability of that happening (given his innocence) is pretty high, so we’re
not persuaded that he’s guilty. The bank’s security camera showed the robber was male
and about the dependant’s height and weight. Hmmm. Could that be a coincidence? If
he’s innocent, then it’s a little less likely that the car and description would both match,
so our P-value goes down. We’re starting to question his innocence a little. Witnesses
said the robber wore a blue jacket just like the one the police found in a garbage can
behind the defendant’s house. Well, if he’s innocent, then that doesn’t seem very likely,
does it? If he’s really innocent, the probability that all of these could have happened
is getting pretty low. Now our P-value may be small enough to be called “beyond a rea-
sonable doubt” and lead to a conviction. Each new piece of evidence strains our skepti-
cism a bit more. The more compelling the evidence—the more unlikely it would be
were he innocent—the more convinced we become that he’s guilty.

But even though it may make us more confident in declaring him guilty, additional
evidence does not make him any guiltier. Either he robbed the bank or he didn’t.
Additional evidence (like the teller picking him out of a police lineup) just makes us
more confident that we did the right thing when we convicted him. The lower the
P-value, the more comfortable we feel about our decision to reject the null hypothe-
sis, but the null hypothesis doesn’t get any more false.

P1H0|data2,

What to Do with a High P-value
Therapeutic touch (TT), taught in many schools of nursing, is a therapy in which
the practitioner moves her hands near, but does not touch, a patient in an attempt
to manipulate a “human energy field.” Therapeutic touch practitioners believe
that by adjusting this field they can promote healing. However, no instrument has
ever detected a human energy field, and no experiment has ever shown that TT
practitioners can detect such a field.

In 1998, the Journal of the American Medical Association published a paper report-
ing work by a then nine-year-old girl.4 She had performed a simple experiment in

“You’re so guilty now.”
—Rearview Mirror

“The wise man proportions his
belief to the evidence.”

—David Hume, 
“Enquiry Concerning Human

Understanding,” 1748

4 L. Rosa, E. Rosa, L. Sarner, and S. Barrett, “A Close Look at Therapeutic Touch,” JAMA
279(13) [1 April 1998]: 1005–1010.
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What to Do with a High P-value 485

which she challenged 15 TT practitioners to detect whether her unseen hand was
hovering over their left or right hand (selected by the flip of a coin).

The practitioners “warmed up” with a period during which they could see
the experimenter’s hand, and each said that they could detect the girl’s human
energy field. Then a screen was placed so that the practitioners could not see the
girl’s hand, and they attempted 10 trials each. Overall, of 150 trials, the TT practi-
tioners were successful 70 times, for a success proportion of 46.7%. Is there
evidence from this experiment that TT practitioners can successfully detect a
“human energy field”?

When we see a small P-value, we could continue to believe the null hypothe-
sis and conclude that we just witnessed a rare event. But instead, we trust the data
and use it as evidence to reject the null hypothesis.

In the therapeutic touch example, the null hypothesis is that the practitioners
are guessing, so we expect them to be right about half the time by chance. That’s
why we say They claim that they can detect a “human energy field”
and that their success rate should be well above chance, so our alternative is that

they would do better than guessing. That’s a one-sided alternative
hypothesis: With a one-sided hypothesis, our P-value
is the probability the practitioners could achieve the observed
number of successes or more even if they were just guessing.

If the practitioners had been highly successful, that would
have been unusually lucky for guessing, so we would have seen a
correspondingly low P-value. Since we don’t believe in rare events,
we would then have concluded that they weren’t guessing.

But that’s not what happened. What we actually observed was that they did
slightly worse than 50%, with a success rate.

As the figure shows, the probability of a success rate of 0.467
or more is even bigger than 0.5. In this case, it turns out to be 0.793.
Obviously, we won’t be rejecting the null hypothesis; for us to re-
ject it, the P-value would have to be quite small. But a P-value of
0.788 seems so big it is almost awkward. With a success rate even
lower than chance, we could have concluded right away that we
have no evidence for rejecting 

Big P-values just mean that what we’ve observed isn’t surpris-
ing. That is, the results are in line with our assumption that the null
hypothesis models the world, so we have no reason to reject it.
A big P-value doesn’t prove that the null hypothesis is true, but it

certainly offers no evidence that it’s not true. When we see a large P-value, all we
can say is that we “don’t reject the null hypothesis.”

H0.

pN = 0.467

HA: p 7 0.5.

H0: p = 0.5.

More about P-valuesFOR EXAMPLE

Recap: The question of whether the diabetes drug Avandia increased the risk of heart attack was raised by a study in the New England Journal of
Medicine. This study estimated the seven-year risk of heart attack to be 28.9% and reported a P-value of 0.03 for a test of whether this risk was higher
than the baseline seven-year risk of 20.2%. An earlier study (the ADOPT study) had estimated the seven-year risk to be 26.9% and reported a P-value
of 0.27.

Question: Why did the researchers in the ADOPT study not express alarm about the increased risk they had seen?

A P-value of 0.27 means that a heart attack rate at least as high as the one they observed could be expected in 27%
of similar experiments even if, in fact, there were no increased risk from taking Avandia. That’s not remarkable enough
to reject the null hypothesis. In other words, the ADOPT study wasn’t convincing.

Activity: Testing
Therapeutic Touch. Perform the
one-proportion z-test using
ActivStats technology. The test in
ActivStats is two-sided. Do you
think this is the appropriate
choice?

Video: Is There Evidence
for Therapeutic Touch? This
video shows the experiment and
tells the story.

0.50 p̂

0.467 0.50 p̂
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It Could Happen to You!
Of course, if the null
hypothesis is true, no matter
what alpha level you choose,
you still have a probability 

of rejecting the null
hypothesis by mistake.This 
is the rare event we want to
protect ourselves against.
When we do reject the null
hypothesis, no one ever
thinks that this is one of those
rare times. As statistician Stu
Hunter notes,“The statistician
says ‘rare events do happen—
but not to me!’”

a

Alpha Levels
Sometimes we need to make a firm decision about whether or not to reject the null
hypothesis. A jury must decide whether the evidence reaches the level of “beyond
a reasonable doubt.” A business must select a Web design. You need to decide
which section of Statistics to enroll in.

When the P-value is small, it tells us that our data are rare, given the null
hypothesis. As humans, we are suspicious of rare events. If the data are “rare
enough,” we just don’t think that could have happened due to chance. Since the
data did happen, something must be wrong. All we can do now is reject the null
hypothesis.

But how rare is “rare”?
We can define “rare event” arbitrarily by setting a threshold for our P-value.

If our P-value falls below that point, we’ll reject the null hypothesis. We call such
results statistically significant. The threshold is called an alpha level. Not sur-
prisingly, it’s labeled with the Greek letter . Common levels are 0.10, 0.05, and
0.01. You have the option—almost the obligation—to consider your alpha level
carefully and choose an appropriate one for the situation. If you’re assessing the
safety of air bags, you’ll want a low alpha level; even 0.01 might not be low
enough. If you’re just wondering whether folks prefer their pizza with or without
pepperoni, you might be happy with . It can be hard to justify your
choice of , though, so often we arbitrarily choose 0.05. Note, however: You must
select the alpha level before you look at the data. Otherwise you can be accused of
cheating by tuning your alpha level to suit the data.

a

a = 0.10

aa

Activity: Rejecting the
Null Hypothesis. See alpha
levels at work in the animated
hypothesis-testing tool.

Where did the value 0.05 come from? In 1931, in a famous book called
The Design of Experiments, Sir Ronald Fisher discussed the amount of evidence
needed to reject a null hypothesis. He said that it was situation dependent, but re-
marked, somewhat casually, that for many scientific applications, 1 out of 20 might
be a reasonable value. Since then, some people—indeed some entire disciplines—
have treated the number 0.05 as sacrosanct.

The alpha level is also called the significance level. When we reject the null
hypothesis, we say that the test is “significant at that level.” For example, we
might say that we reject the null hypothesis “at the 5% level of significance.”

What can you say if the P-value does not fall below ?
When you have not found sufficient evidence to reject the null according to

the standard you have established, you should say that “The data have failed to
provide sufficient evidence to reject the null hypothesis.” Don’t say that you “ac-
cept the null hypothesis.” You certainly haven’t proven or established it; it was
merely assumed to begin with. Say that you’ve failed to reject it.

Think again about the therapeutic touch example. The P-value was 0.788. This
is so much larger than any reasonable alpha level that we can’t reject For this
test, we’d conclude, “We fail to reject the null hypothesis. There is insufficient evi-
dence to conclude that the practitioners are performing better than they would if
they were just guessing.”

The automatic nature of the reject/fail-to-reject decision when we use an al-
pha level may make you uncomfortable. If your P-value falls just slightly above
your alpha level, you’re not allowed to reject the null. Yet a P-value just barely be-
low the alpha level leads to rejection. If this bothers you, you’re in good company.
Many statisticians think it better to report the P-value than to base a decision on
an arbitrary alpha level.

H0.

a

NOTATION ALERT:
The first Greek letter, , is used
in Statistics for the threshold
value of a hypothesis test.You’ll
hear it referred to as the alpha
level. Common values are 0.10,
0.05, 0.01, and 0.001.

a

Sir Ronald Fisher (1890–1962) was
one of the founders of modern 
Statistics.
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When you decide to declare a verdict, it’s always a good idea to report the
P-value as an indication of the strength of the evidence. Sometimes it’s best to
report that the conclusion is not yet clear and to suggest that more data be gath-
ered. (In a trial, a jury may “hang” and be unable to return a verdict.) In these
cases, the P-value is the best summary we have of what the data say or fail to say
about the null hypothesis.

Significant vs. Important
What do we mean when we say that a test is statistically signifi-
cant? All we mean is that the test statistic had a P-value lower
than our alpha level. Don’t be lulled into thinking that statisti-
cal significance carries with it any sense of practical importance
or impact.

For large samples, even small, unimportant (“insignifi-
cant”) deviations from the null hypothesis can be statistically
significant. On the other hand, if the sample is not large enough,
even large financially or scientifically “significant” differences
may not be statistically significant.

It’s good practice to report the magnitude of the difference
between the observed statistic value and the null hypothesis
value (in the data units) along with the P-value on which we
base statistical significance.

Confidence Intervals and Hypothesis Tests
For the motorcycle helmet example, a 95% confidence interval would give 

, or 47.2% to 54.2%. If the previous rate of helmet com-
pliance had been, say, 50%, we would not have been able to reject the null hypothesis
because 50% is in the interval, so it’s a plausible value. Indeed, any hypothesized
value for the true proportion of helmet wearers in this interval is consistent with the
data. Any value outside the confidence interval would make a null hypothesis that
we would reject, but we’d feel more strongly about values far outside the interval.

Confidence intervals and hypothesis tests are built from the same calculations.5

They have the same assumptions and conditions. As we have just seen, you can

1.96 * 0.0179 = 10.472, 0.5422
0.507 ;

It’s in the stars Some disciplines carry the idea further and code P-values by
their size. In this scheme, a P-value between 0.05 and 0.01 gets highlighted by *.
A P-value between 0.01 and 0.001 gets **, and a P-value less than 0.001 gets ***.
This can be a convenient summary of the weight of evidence against the null hy-
pothesis if it’s not taken too literally. But we warn you against taking the distinctions
too seriously and against making a black-and-white decision near the boundaries.
The boundaries are a matter of tradition, not science; there is nothing special about
0.05. A P-value of 0.051 should be looked at very seriously and not casually
thrown away just because it’s larger than 0.05, and one that’s 0.009 is not very
different from one that’s 0.011.

Practical vs. Statistical Significance
A large insurance company mined its data and
found a statistically significant 
difference between the mean value of policies
sold in 2001 and 2002.The difference in the mean
values was $9.83. Even though it was statistically
significant, management did not see this as an
important difference when a typical policy sold
for more than $1000. On the other hand, even a
clinically important improvement of 10% in cure
rate with a new treatment is not likely to be
statistically significant in a study of fewer than
225 patients. A small clinical trial would probably
not be conclusive.

1P = 0.042

5 As we saw in Chapter 20, this is not exactly true for proportions. For a confidence interval,
we estimate the standard deviation of from itself. Because we estimate it from the data,
we have a standard error. For the corresponding hypothesis test, we use the model’s stan-
dard deviation for , based on the null hypothesis value When and are close, these
calculations give similar results. When they differ, you’re likely to reject (because the
observed proportion is far from your hypothesized value). In that case, you’re better off
building your confidence interval with a standard error estimated from the data.

H0

p0pNp0.pN

pNpN
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approximate a hypothesis test by examining the confidence interval. Just ask
whether the null hypothesis value is consistent with a confidence interval for the
parameter at the corresponding confidence level. Because confidence intervals are
naturally two-sided, they correspond to two-sided tests. For example, a 95% confi-
dence interval corresponds to a two-sided hypothesis test at . In general, a
confidence interval with a confidence level of C% corresponds to a two-sided
hypothesis test with an level of .

The relationship between confidence intervals and one-sided hypothesis tests
is a little more complicated. For a one-sided test with , the corresponding
confidence interval has a confidence level of 90%—that’s 5% in each tail. In gen-
eral, a confidence interval with a confidence level of C% corresponds to a one-
sided hypothesis test with an level of .1

21100 - C2%a

a = 5%

100 - C%a

a = 5%

Making a decision based on a confidence intervalFOR EXAMPLE

JUST CHECKING
1. An experiment to test the fairness of a roulette wheel gives a z-score of 0.62. What would you conclude?

2. In the last chapter we encountered a bank that wondered if it could get more customers to make payments on delin-
quent balances by sending them a DVD urging them to set up a payment plan. Well, the bank just got back the results
on their test of this strategy. A 90% confidence interval for the success rate is (0.29, 0.45). Their old send-a-letter method
had worked 30% of the time. Can you reject the null hypothesis that the proportion is still 30% at ? Explain.

3. Given the confidence interval the bank found in their trial of DVDs, what would you recommend that they do?
Should they scrap the DVD strategy?

a = 0.05

Teens are at the greatest risk of being killed or injured in traffic crashes. According
to the National Highway Traffic Safety Administration, 65% of young people killed
were not wearing a safety belt. In 2001, a total of 3322 teens were killed in motor ve-
hicle crashes, an average of 9 teenagers a day. Because many of these deaths could
easily be prevented by the use of safety belts, several states have begun “Click It or
Ticket” campaigns in which increased enforcement and publicity have resulted in
significantly higher seatbelt use. Overall use in Massachusetts quickly increased
from 51% in 2002 to 64.8% in 2006, with a goal of surpassing the national average of
82%. Recently, a local newspaper reported that a roadblock resulted in 23 tickets to
drivers who were unbelted out of 134 stopped for inspection.

Wear that Seatbelt!STEP-BY-STEP EXAMPLE

Recap: The baseline seven-year risk of heart attacks for diabetics is 20.2%. In 2007 a NEJM study reported a 95% confidence interval equivalent to
20.8% to 40.0% for the risk among patients taking the diabetes drug Avandia.

Question: What did this confidence interval suggest to the FDA about the safety of the drug?

The FDA could be 95% confident that the interval from 20.8% to 40.0% included the true risk of heart attack for 
diabetes patients taking Avandia. Because the lower limit of this interval was higher than the baseline risk of 20.2%,
there was evidence of an increased risk.
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Question: Does this provide evidence that the goal of over 82% compliance was met?

Let’s use a confidence interval to test this hypothesis.

The data come from a local newspaper report
that tells the number of tickets issued and
number of drivers stopped at a recent road-
block. I want to know whether the rate of
compliance with the seatbelt law is greater
than 82%.

Ç Independence Assumption: Drivers are
not likely to influence one another when it
comes to wearing a seatbelt.

Ç Randomization Condition: This wasn’t a
random sample, but I assume these drivers
are representative of the driving public.

Ç 10% Condition: The police stopped fewer
than 10% of all drivers.

Ç Success/Failure Condition: There were 
111 successes and 23 failures, both 
at least 10. The sample is large enough.

Under these conditions, the sampling model is
Normal. I’ll create a one-proportion z-interval.

HA: p 7 0.82
H0: p = 0.82

Plan State the problem and discuss the
variables and the W’s.

Hypotheses The null hypothesis is 
that the compliance rate is only 82%. 
The alternative is that it is now higher. 
It’s clearly a one-sided test, so if we use 
a confidence interval, we’ll have to be
careful about what level we use.

Model Think about the assumptions and
check the conditions.

We are finding a confidence interval, so
we work from the data rather than the
null model.

State your method.

Mechanics Write down the given 
information, and determine the sample
proportion.

To use a confidence interval, we need a
confidence level that corresponds to the
alpha level of the test. If we use ,
we should construct a 90% confidence 
interval, because this is a one-sided test.

That will leave 5% on each side of the 
observed proportion. Determine the 
standard error of the sample proportion
and the margin of error. The critical value
is .

The confidence interval is

estimate ; margin of error.

z* = 1.645

a = 0.05

so

The 90% confidence interval is

(0.774, 0.882).
0.828 ; 0.054 or

 = 1.645(0.033) = 0.054
 ME = z* * SE1pN2

SE(pN) = B
pNqN

n
= B

(0.828)(0.172)
134

= 0.033

 pN =

111
134

= 0.828 and

n = 134,
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490 CHAPTER 21    More About Tests and Intervals

*A 95% Confidence Interval for Small Samples
When the Success/Failure Condition fails, all is not lost. A simple adjustment to
the calculation lets us make a 95% confidence interval anyway.

All we do is add four phony observations—two to the successes, two to the

failures. So instead of the proportion , we use the adjusted proportion

and, for convenience, we write . We modify the interval by
using these adjusted values for both the center of the interval and the margin of
error. Now the adjusted interval is

This adjusted form gives better performance overall6 and works much better for
proportions near 0 or 1. It has the additional advantage that we no longer need to
check the Success/Failure Condition that and are greater than 10.nqNnpN

p
'

; z*B
p
'

11 - p
'

2

n
' .

n
'

= n + 4p
'

=

y + 2

n + 4

pN =

y

n

I am 90% confident that between 77.4% and
88.2% of all drivers wear their seatbelts. 
Because the hypothesized rate of 82% is 
within this interval, I do not reject the null
hypothesis. There is insufficient evidence to
conclude that the campaign was truly effective
and now more than 82% of all drivers are wear-
ing seatbelts.

The upper limit of the confidence interval shows
it’s possible that the campaign is quite suc-
cessful, but the small sample size makes the
interval too wide to be very specific.

Conclusion Link the confidence interval
to your decision about the null hypothe-
sis, and then state your conclusion in 
context.

6 By “better performance,” we mean that a 95% confidence interval has more nearly a 95%
chance of covering the true population proportion. Simulation studies have shown that our
original, simpler confidence interval in fact is less likely than 95% to cover the true popula-
tion proportion when the sample size is small or the proportion very close to 0 or 1. The orig-
inal idea for this method can be attributed to E. B. Wilson. The simpler approach discussed
here was proposed by Agresti and Coull (A. Agresti and B. A. Coull, “Approximate Is Better
Than ‘Exact’ for Interval Estimation of Binomial Proportions,” The American Statistician,
52[1998]: 119–129).

An Agresti-Coull “plus-four” intervalFOR EXAMPLE

Surgeons examined their results to compare two methods for a surgical procedure used to alleviate pain on the outside of the wrist. A new method was
compared with the traditional “freehand” method for the procedure. Of 45 operations using the “freehand” method, three were unsuccessful, for a fail-
ure rate of 6.7%. With only 3 failures, the data don’t satisfy the Success/Failure Condition, so we can’t use a standard confidence interval.

Question: What’s the confidence interval using the “plus-four” method?

BOCK_C21_0321570448 pp3.qxd  12/2/08  2:40 PM  Page 490



Making Errors 491

Making Errors
Nobody’s perfect. Even with lots of evidence, we can still make the wrong decision.
In fact, when we perform a hypothesis test, we can make mistakes in two ways:

I. The null hypothesis is true, but we mistakenly reject it.
II. The null hypothesis is false, but we fail to reject it.

These two types of errors are known as Type I and Type II errors. One way
to keep the names straight is to remember that we start by assuming the null
hypothesis is true, so a Type I error is the first kind of error we could make.

In medical disease testing, the null hypothesis is usually the assumption that
a person is healthy. The alternative is that he or she has the disease we’re testing
for. So a Type I error is a false positive: A healthy person is diagnosed with the dis-
ease. A Type II error, in which an infected person is diagnosed as disease free, is a
false negative. These errors have other names, depending on the particular disci-
pline and context.

Which type of error is more serious depends on the situation. In the jury trial,
a Type I error occurs if the jury convicts an innocent person. A Type II error occurs
if the jury fails to convict a guilty person. Which seems more serious? In medical
diagnosis, a false negative could mean that a sick patient goes untreated. A false
positive might mean that the person must undergo further tests. In a Statistics
final exam (with the student has learned only 60% of the material), a Type I
error would be passing a student who in fact learned less than 60% of the mate-
rial, while a Type II error would be failing a student who knew enough to pass.
Which of these errors seems more serious? It depends on the situation, the cost,
and your point of view.

Here’s an illustration of the situations:

H0:

There were 42 successes and 3 failures. Adding 2 “pseudo-successes” and 2 “pseudo-failures,” we find

A 95% confidence interval is then

Notice that although the observed failure rate of 0.067 is contained in the interval, it is not at the center of the interval—something we haven’t seen
with any of the other confidence intervals we’ve considered.

0.102 ; 1.96 B
0.102(1 - 0.102)

49
= 0.102 ; 0.085 or (0.017, 0.187).

p' =

3 + 2
45 + 4

= 0.102

Activity: Type I and Type II
Errors. View an animated
exploration of Type I and Type II
errors—a good backup for the
reading in this section.

Some false-positive results
mean no more than an
unnecessary chest X-ray. But
for a drug test or a disease
like AIDS, a false-positive
result that is not kept
confidential could have
serious consequences.

My
Decision

The Truth

Reject H0

H0 True H0 False

Fail to
reject H0 

Type I
Error

Type II
ErrorOK

OK

How often will a Type I error occur? It happens when the null hypothesis is true
but we’ve had the bad luck to draw an unusual sample. To reject the P-valueH0,

Activity: Hypothesis 
Tests Are Random. Simulate
hypothesis tests and watch Type I
errors occur. When you conduct
real hypothesis tests you’ll never
know, but simulation can tell you
when you’ve made an error.
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492 CHAPTER 21    More About Tests and Intervals

must fall below . When is true, that happens exactly with probability . So when
you choose level , you’re setting the probability of a Type I error to .

What if is not true? Then we can’t possibly make a Type I error. You can’t
get a false positive from a sick person. A Type I error can happen only when 
is true.

When is false and we reject it, we have done the right thing. A test’s ability
to detect a false null hypothesis is called the power of the test. In a jury trial,
power is the ability of the criminal justice system to convict people who are
guilty—a good thing! We’ll have a lot more to say about power soon.

When is false but we fail to reject it, we have made a Type II error. We
assign the letter to the probability of this mistake. What’s the value of ? That’s
harder to assess than because we don’t know what the value of the parameter
really is. When is true, it specifies a single parameter value. But when is
false, we don’t have a specific one; we have many possible values. We can com-
pute the probability for any parameter value in . But which one should we
choose?

One way to focus our attention is by thinking about the effect size. That is, we
ask ”How big a difference would matter?” Suppose a charity wants to test whether
placing personalized address labels in the envelope along with a request for a
donation increases the response rate above the baseline of 5%. If the minimum
response that would pay for the address labels is 6%, they would calculate for
the alternative .

We could reduce for all alternative parameter values by increasing . By
making it easier to reject the null, we’d be more likely to reject it whether it’s true
or not. So we’d reduce , the chance that we fail to reject a false null—but we’d
make more Type I errors. This tension between Type I and Type II errors is
inevitable. In the political arena, think of the ongoing debate between those who
favor provisions to reduce Type I errors in the courts (supporting Miranda rights,
requiring warrants for wiretaps, providing legal representation for those who
can’t afford it) and those who advocate changes to reduce Type II errors (admit-
ting into evidence confessions made when no lawyer is present, eavesdropping
on conferences with lawyers, restricting paths of appeal, etc.).

The only way to reduce both types of error is to collect more evidence or, in
statistical terms, to collect more data. Too often, studies fail because their sample
sizes are too small to detect the change they are looking for.

b

ab

p = 0.06
b

HAb

H0H0

a

bb

H0

H0

H0

H0

aa

aH0aNOTATION ALERT:
In Statistics, is almost always
saved for the alpha level. But 
has already been used for the
parameters of a linear model.
Fortunately, it’s usually clear
whether we’re talking about a
Type II error probability or the
slope or intercept of a regression
model.

b

a

The null hypothesis specifies a
single value for the parameter.
So it’s easy to calculate the
probability of a Type I error.
But the alternative gives a
whole range of possible
values, and we may want to
find a for several of them.b

We have seen ways to find a
sample size by specifying the
margin of error. Choosing the
sample size to achieve a
specified (for a particular
alternative value) is
sometimes more appropriate,
but the calculation is more
complex and lies beyond the
scope of this book.

b

Thinking about errorsFOR EXAMPLE

Recap: A published study found the risk of heart attack to be increased in patients taking the diabetes drug Avandia. The issue of the New England
Journal of Medicine (NEJM) in which that study appeared also included an editorial that said, in part, “A few events either way might have changed the
findings for myocardial infarction7 or for death from cardiovascular causes. In this setting, the possibility that the findings were due to chance cannot be
excluded.”

Question: What kind of error would the researchers have made if, in fact, their findings were due to chance? What could be the consequences of 
this error?

The null hypothesis said the risk didn’t change, but the researchers rejected that model and claimed evidence of a 
higher risk. If these findings were just due to chance, they rejected a true null hypothesis—a Type I error.
If, in fact, Avandia carried no extra risk, then patients might be deprived of its benefits for no good reason.

7 Doctorese for “heart attack.”
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Power
When we failed to reject the null hypothesis about TT practitioners, did we prove
that they were just guessing? No, it could be that they actually can discern a hu-
man energy field but we just couldn’t tell. For example, suppose they really have
the ability to get 53% of the trials right but just happened to get only 47% in our
experiment. Our confidence interval shows that with these data we wouldn’t
have rejected the null. And if we retained the null even though the true propor-
tion was actually greater than 50%, we would have made a Type II error because
we failed to detect their ability.

Remember, we can never prove a null hypothesis true. We can only fail to re-
ject it. But when we fail to reject a null hypothesis, it’s natural to wonder whether
we looked hard enough. Might the null hypothesis actually be false and our test
too weak to tell?

When the null hypothesis actually is false, we hope our test is strong enough to
reject it. We’d like to know how likely we are to succeed. The power of the test gives
us a way to think about that. The power of a test is the probability that it correctly re-
jects a false null hypothesis. When the power is high, we can be confident that we’ve
looked hard enough. We know that is the probability that a test fails to reject a false
null hypothesis, so the power of the test is the probability that it does reject: .

Whenever a study fails to reject its null hypothesis, the test’s power comes
into question. Was the sample size big enough to detect an effect had there been
one? Might we have missed an effect large enough to be interesting just because
we failed to gather sufficient data or because there was too much variability in the
data we could gather? The therapeutic touch experiment failed to reject the null
hypothesis that the TT practitioners were just guessing. Might the problem be that
the experiment simply lacked adequate power to detect their ability?

1 - b

b

Errors and powerFOR EXAMPLE

Recap: The study of Avandia published in the NEJM combined results from 47 different trials—a method called meta-analysis. The drug’s manu-
facturer, GlaxoSmithKline (GSK), issued a statement that pointed out, “Each study is designed differently and looks at unique questions: For example,
individual studies vary in size and length, in the type of patients who participated, and in the outcomes they investigate.” Nevertheless, by combining data
from many studies, meta-analyses can achieve a much larger sample size.

Question: How could this larger sample size help?

If Avandia really did increase the seven-year heart attack rate, doctors needed to know. To overlook that would have
been a Type II error (failing to detect a false null hypothesis), resulting in patients being put at greater risk. Increas-
ing the sample size could increase the power of the analysis, making it more likely that researchers will detect the
danger if there is one.

When we calculate power, we imagine that the null hypothesis is false. The
value of the power depends on how far the truth lies from the null hypothesis
value. We call the distance between the null hypothesis value, and the truth, p,
the effect size. The power depends directly on the effect size. It’s easier to see
larger effects, so the farther is from p, the greater the power. If the therapeutic
touch practitioners were in fact able to detect human energy fields 90% of the time,
it should be easy to see that they aren’t guessing. With an effect size this large,
we’d have a powerful test. If their true success rate were only 53%, however, we’d
need a larger sample size to have a good chance of noticing that (and rejecting ).

How can we decide what power we need? Choice of power is more a finan-
cial or scientific decision than a statistical one because to calculate the power, we
need to specify the “true” parameter value we’re interested in. In other words,

H0

p0

p0,

Activity: The Power of a
Test. Power is a concept that’s
much easier to understand 
when you can visualize what’s
happening.
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494 CHAPTER 21    More About Tests and Intervals

power is calculated for a particular effect size, and it changes depending on the
size of the effect we want to detect. For example, do you think that health insur-
ance companies should pay for therapeutic touch if practitioners could detect a
human energy field only 53% of the time—just slightly better than chance? That
doesn’t seem clinically useful.8 How about 75% of the time? No therapy works all
the time, and insurers might be quite willing to pay for such a success rate. Let’s
take 75% as a reasonably interesting effect size (keeping in mind that 50% is the
level of guessing). With 150 trials, the TT experiment would have been able to de-
tect such an ability with a power of 99.99%. So power was not an issue in this
study. There is only a very small chance that the study would have failed to de-
tect a practitioner’s ability, had it existed. The sample size was clearly big enough.

JUST CHECKING
4. Remember our bank that’s sending out DVDs to try to get customers to make payments on delinquent loans? It is

looking for evidence that the costlier DVD strategy produces a higher success rate than the letters it has been sending.
Explain what a Type I error is in this context and what the consequences would be to the bank.

5. What’s a Type II error in the bank experiment context, and what would the consequences be?

6. For the bank, which situation has higher power: a strategy that works really well, actually getting 60% of people
to pay off their balances, or a strategy that barely increases the payoff rate to 32%? Explain briefly.

A Picture Worth Words

It makes intuitive sense that the larger the effect size, the easier it should be to see
it. Obtaining a larger sample size decreases the probability of a Type II error, so it
increases the power. It also makes sense that the more we’re willing to accept a
Type I error, the less likely we will be to make a Type II error.

1
P1z 7 3.092

Suppose the Null
Hypothesis is true.

Suppose the Null
Hypothesis is not true.

Type I Error

Type II Error

p0

B

p

Fail to reject H0 Reject H0

Power

p*

FIGURE 21.1
The power of a test is the probability that it re-
jects a false null hypothesis. The upper figure
shows the null hypothesis model. We’d reject
the null in a one-sided test if we observed a
value of in the red region to the right of the
critical value, The lower figure shows the
true model. If the true value of is greater than

then we’re more likely to observe a value
that exceeds the critical value and make the
correct decision to reject the null hypothesis.
The power of the test is the purple region on
the right of the lower figure. Of course, even
drawing samples whose observed proportions
are distributed around , we’ll sometimes get a
value in the red region on the left and make a
Type II error of failing to reject the null.

p

p0,
p

p*.
pN

8 On the other hand, a scientist might be interested in anything clearly different from the
50% guessing rate because that might suggest an entirely new physics at work. In fact, it
could lead to a Nobel prize.
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Figure 21.1 shows a good way to visualize the relationships among these con-
cepts. Suppose we are testing against the alternative We’ll re-
ject the null if the observed proportion, , is big enough. By big enough, we mean

for some critical value, (shown as the red region in the right tail of the up-
per curve). For example, we might be willing to believe the ability of therapeutic
touch practitioners if they were successful in 65% of our trials. This is what the upper
model shows. It’s a picture of the sampling distribution model for the proportion if
the null hypothesis were true. We’d make a Type I error whenever the sample gave
us , because we would reject the (true) null hypothesis. And unusual samples
like that would happen only with probability .

In reality, though, the null hypothesis is rarely exactly true.
The lower probability model supposes that is not true. In par-
ticular, it supposes that the true value is p, not (Perhaps the TT
practitioner really can detect the human energy field 72% of the
time.) It shows a distribution of possible observed values around
this true value. Because of sampling variability, sometimes 
and we fail to reject the (false) null hypothesis. Suppose a TT prac-
titioner with a true ability level of 72% is actually successful on
fewer than 65% of our tests. Then we’d make a Type II error. The
area under the curve to the left of in the bottom model repre-
sents how often this happens. The probability is . In this picture,

is less than half, so most of the time we do make the right deci-
sion. The power of the test—the probability that we make the right
decision—is shown as the region to the right of It’s .

We calculate based on the upper model because depends
only on the null model and the alpha level. No matter what the
true proportion, no matter whether the practitioners can detect a
human energy field 90%, 53%, or 2% of the time, doesn’t
change. After all, we don’t know the truth, so we can’t use it to de-
termine the critical value. But we always reject when .

How often we correctly reject when it’s false depends on
the effect size. We can see from the picture that if the effect size
were larger (the true proportion were farther above the hypoth-
esized value), the bottom curve would shift to the right, making
the power greater.

We can see several important relationships from this figure:

u .

u Reducing to lower the chance of committing a Type I error will move the criti-
cal value, to the right (in this example). This will have the effect of increasing

, the probability of a Type II error, and correspondingly reducing the power.

u The larger the real difference between the hypothesized value, and the true
population value, p, the smaller the chance of making a Type II error and the
greater the power of the test. If the two proportions are very far apart, the two
models will barely overlap, and we will not be likely to make any Type II errors
at all—but then, we are unlikely to really need a formal hypothesis-testing pro-
cedure to see such an obvious difference. If the TT practitioners were successful
almost all the time, we’d be able to see that with even a small experiment.

Reducing Both Type I and Type II Errors
Figure 21.1 seems to show that if we reduce Type I error, we automatically must
increase Type II error. But there is a way to reduce both. Can you think of it?

If we can make both curves narrower, as shown in Figure 21.2, then both the
probability of Type I errors and the probability of Type II errors will decrease, and
the power of the test will increase.

p0,
b

p*,
a

Power = 1 - b

H0

pN 7 p* H0

p*

p*p*
1 - bp*.

b

b

p*

pN 6 p*
pN

p0.
H0

a

pN 7 p*

p*pN 7 p*
pN

HA: p 7 p0.H0: p = p0

Activity: Power and
Sample Size. Investigate how the
power of a test changes with the
sample size. The interactive tool
is really the only way you can see
this easily.

NOTATION ALERT:
We’ve attached symbols to
many of the p’s. Let’s keep them
straight. p is a true proportion
parameter. is a hypothesized
value of p. is an observed
proportion. p* is a critical value
of a proportion corresponding
to a specified .a

pN
p0

Fisher and a 5 0.05
Why did Sir Ronald Fisher suggest 0.05 as a
criterion for testing hypotheses? It turns out that
he had in mind small initial studies. Small studies
have relatively little power. Fisher was concerned
that they might make too many Type II errors—
failing to discover an important effect—if too strict
a criterion were used. Once a test failed to reject a
null hypothesis, it was unlikely that researchers
would return to that hypothesis to try again.

On the other hand, the increased risk of 
Type I errors arising from a generous criterion
didn’t concern him as much for exploratory
studies because these are ordinarily followed by a
replication or a larger study.The probability of 
a Type I error is —in this case, 0.05.The
probability that two independent studies would
both make Type I errors is , so
Fisher was confident that Type I errors in initial
studies were not a major concern.

The widespread use of the relatively
generous 0.05 criterion even in large studies is
most likely not what Fisher had in mind.

0.05 * 0.05 = 0.0025

a
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496 CHAPTER 21    More About Tests and Intervals

How can we accomplish that? The only way is to reduce the standard deviations
by increasing the sample size. (Remember, these are pictures of sampling distribu-
tion models, not of data.) Increasing the sample size works regardless of the true
population parameters. But recall the curse of diminishing returns. The standard de-
viation of the sampling distribution model decreases only as the square root of the
sample size, so to halve the standard deviations we must quadruple the sample size.

Suppose the Null
Hypothesis is true.

Suppose the Null
Hypothesis is not true.

Type I Error

Type II Error

p0

p
Fail to Reject H0 Reject H0

Power

p*

FIGURE 21.2
Making the standard deviations
smaller increases the power without
changing the corresponding critical
value. The means are just as far apart
as in Figure 21.1, but the error rates
are reduced.

Sample size, errors, and powerFOR EXAMPLE

Recap: The meta-analysis of the risks of heart attacks in patients taking the diabetes drug Avandia combined results from 47 smaller studies. As
GlaxoSmith-Kline (GSK), the drug’s manufacturer, pointed out in their rebuttal, “Data from the ADOPT clinical trial did show a small increase in reports
of myocardial infarction among the Avandia-treated group . . . however, the number of events is too small to reach a reliable conclusion about the role
any of the medicines may have played in this finding.”

Question: Why would this smaller study have been less likely to detect the difference in risk? What are the appropriate statistical concepts for com-
paring the smaller studies?

Smaller studies are subject to greater sampling variability; that is, the sampling distributions they estimate have a larger
standard deviation for the sample proportion. That gives small studies less power: They’d be less able to discern whether
an apparently higher risk was merely the result of chance variation or evidence of real danger. The FDA doesn’t want to re-
strict the use of a drug that’s safe and effective (Type I error), nor do they want patients to continue taking a medication
that puts them at risk (Type II error). Larger sample sizes can reduce the risk of both kinds of error. Greater power (the
probability of rejecting a false null hypothesis) means a better chance of spotting a genuinely higher risk of heart attacks.

WHAT CAN GO WRONG?
u Don’t interpret the P-value as the probability that H0 is true. The P-value is about the data,

not the hypothesis. It’s the probability of observing data this unusual, given that 
is true, not the other way around.

u Don’t believe too strongly in arbitrary alpha levels. There’s not really much difference be-
tween a P-value of 0.051 and a P-value of 0.049, but sometimes it’s regarded as the dif-
ference between night (having to refrain from rejecting ) and day (being able toH0

H0

Errors and power. Explore the rela-
tionships among Type I and Type II
errors, sample size, effect size, and
the power of a test.
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shout to the world that your results are “statistically significant”). It may just be better
to report the P-value and a confidence interval and let the world decide along with you.

u Don’t confuse practical and statistical significance. A large sample size can make it easy
to discern even a trivial change from the null hypothesis value. On the other hand,
an important difference can be missed if your test lacks sufficient power.

u Don’t forget that in spite of all your care, you might make a wrong decision. We can never re-
duce the probability of a Type I error ( ) or of a Type II error ( ) to zero (but increas-
ing the sample size helps).

ba

CONNECTIONS
All of the hypothesis tests we’ll see boil down to the same question: “Is the difference between two
quantities large?” We always measure “how large” by finding a ratio of this difference to the stan-
dard deviation of the sampling distribution of the statistic. Using the standard deviation as our
ruler for inference is one of the core ideas of statistical thinking.

We’ve discussed the close relationship between hypothesis tests and confidence intervals. They
are two sides of the same coin.

This chapter also has natural links to the discussion of probability, to the Normal model, and to
the two previous chapters on inference.

WHAT HAVE WE LEARNED?

We’ve learned that there’s a lot more to hypothesis testing than a simple yes/no decision.

u We’ve learned that the P-value can indicate evidence against the null hypothesis when it’s small,
but it does not tell us the probability that the null hypothesis is true.

u We’ve learned that the alpha level of the test establishes the level of proof we’ll require. That 
determines the critical value of z that will lead us to reject the null hypothesis.

u We’ve also learned more about the connection between hypothesis tests and confidence inter-
vals; they’re really two ways of looking at the same question. The hypothesis test gives us the
answer to a decision about a parameter; the confidence interval tells us the plausible values of
that parameter.

We’ve learned about the two kinds of errors we might make, and we’ve seen why in the end we’re
never sure we’ve made the right decision.

u If the null hypothesis is really true and we reject it, that’s a Type I error; the alpha level of the
test is the probability that this could happen.

u If the null hypothesis is really false but we fail to reject it, that’s a Type II error.
u The power of the test is the probability that we reject the null hypothesis when it’s false. The

larger the size of the effect we’re testing for, the greater the power of the test to detect it.
u We’ve seen that tests with a greater likelihood of Type I error have more power and less chance

of a Type II error. We can increase power while reducing the chances of both kinds of error by in-
creasing the sample size.

Terms
Alpha level 486. The threshold P-value that determines when we reject a null hypothesis. If we observe a sta-

tistic whose P-value based on the null hypothesis is less than , we reject that null hypothesis.

Statistically significant 486. When the P-value falls below the alpha level, we say that the test is “statistically significant”
at that alpha level.

a
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Significance level 486. The alpha level is also called the significance level, most often in a phrase such as a conclu-
sion that a particular test is “significant at the 5% significance level.”

Type I error 491. The error of rejecting a null hypothesis when in fact it is true (also called a “false positive”).
The probability of a Type I error is .

Type II error 491. The error of failing to reject a null hypothesis when in fact it is false (also called a “false nega-
tive”). The probability of a Type II error is commonly denoted and depends on the effect size.

Power 492, 493. The probability that a hypothesis test will correctly reject a false null hypothesis is the
power of the test. To find power, we must specify a particular alternative parameter value as the
“true” value. For any specific value in the alternative, the power is .

Effect size 493. The difference between the null hypothesis value and true value of a model parameter is called
the effect size.

Skills
u Understand that statistical significance does not measure the importance or magnitude of an

effect. Recognize when others misinterpret statistical significance as proof of practical importance.

u Understand the close relationship between hypothesis tests and confidence intervals.

u Be able to identify and use the alternative hypothesis when testing hypotheses. Understand how
to choose between a one-sided and two-sided alternative hypothesis, and know how to defend
the choice of a one-sided alternative.

u Understand how the critical value for a test is related to the specified alpha level.

u Understand that the power of a test gives the probability that it correctly rejects a false null hy-
pothesis when a specified alternative is true.

u Understand that the power of a test depends in part on the sample size. Larger sample sizes lead
to greater power (and thus fewer Type II errors).

u Know how to complete a hypothesis test for a population proportion.

u Be able to interpret the meaning of a P-value in nontechnical language.

u Understand that the P-value of a test does not give the probability that the null hypothesis is 
correct.

u Know that we do not “accept” a null hypothesis if we cannot reject it but, rather, that we can
only “fail to reject” the hypothesis for lack of evidence against it.

1 - b

b

a

HYPOTHESIS TESTS ON THE COMPUTER

Reports about hypothesis tests generated by technologies don’t follow a standard form. Most will name the
test and provide the test statistic value, its standard deviation, and the P-value. But these elements may not
be labeled clearly. For example, the expression “ ” means the probability (the “Prob”) of observing a test
statistic whose magnitude (the absolute value tells us this) is larger than that of the one (the “z”) found in the
data (which, because it is written as “z,” we know follows a Normal model). That is a fancy (and not very clear)
way of saying P-value. In some packages, you can specify that the test be one-sided. Others might report three
P-values, covering the ground for both one-sided tests and the two-sided test.

Sometimes a confidence interval and hypothesis test are automatically given together. The CI ought to be for
the corresponding confidence level: for 2-tailed tests, for 1-tailed tests.

Often, the standard deviation of the statistic is called the “standard error,” and usually that’s appropriate
because we’ve had to estimate its value from the data. That’s not the case for proportions, however: We get the

1 - 2a1 - a

Prob 7 ƒ z ƒ
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Exercises 499

standard deviation for a proportion from the null hypothesis value. Nevertheless, you may see the standard devi-
ation called a “standard error” even for tests with proportions.

It’s common for statistics packages and calculators to report more digits of “precision” than could possibly
have been found from the data. You can safely ignore them. Round values such as the standard deviation to one
digit more than the number of digits reported in your data.

Here are the kind of results you might see. This is not from any program or calculator we know of, but it shows
some of the things you might see in typical computer output.

For information on hypothesis testing with particular statistics packages, see the table for Chapter 20 in
Appendix B.

Usually, the test is named

Might offer a CI as well
These are bounds for the 95% CI
because a = 0.05—a fact not
clearly stated

test statistic
value

Actually,
a standard
deviation
because this
is a test

P-value

2-sided 
alternative

Test of p = 0.5

Estimate  0.467 
Std Err  0.04073
Upper 95% 0.547
Lower 95% 0.387

Value Test Stat Prob > ❘z❘
–0.825 0.42

p̂

EXERCISES

1. One sided or two? In each of the following situations,
is the alternative hypothesis one-sided or two-sided?
What are the hypotheses?
a) A business student conducts a taste test to see whether

students prefer Diet Coke or Diet Pepsi.
b) PepsiCo recently reformulated Diet Pepsi in an at-

tempt to appeal to teenagers. They run a taste test to
see if the new formula appeals to more teenagers than
the standard formula.

c) A budget override in a small town requires a two-
thirds majority to pass. A local newspaper conducts a
poll to see if there’s evidence it will pass.

d) One financial theory states that the stock market will
go up or down with equal probability. A student col-
lects data over several years to test the theory.

2. Which alternative? In each of the following situations,
is the alternative hypothesis one-sided or two-sided?
What are the hypotheses?
a) A college dining service conducts a survey to see if

students prefer plastic or metal cutlery.
b) In recent years, 10% of college juniors have applied for

study abroad. The dean’s office conducts a survey to
see if that’s changed this year.

c) A pharmaceutical company conducts a clinical trial to
see if more patients who take a new drug experience
headache relief than the 22% who claimed relief after
taking the placebo.

d) At a small computer peripherals company, only 
60% of the hard drives produced passed all their per-
formance tests the first time. Management recently
invested a lot of resources into the production system
and now conducts a test to see if it helped.

3. P-value. A medical researcher tested a new treatment
for poison ivy against the traditional ointment. He con-
cluded that the new treatment is more effective. Explain
what the P-value of 0.047 means in this context.

4. Another P-value. Have harsher penalties and ad 
campaigns increased seat-belt use among drivers and
passengers? Observations of commuter traffic failed to
find evidence of a significant change compared with
three years ago. Explain what the study’s P-value of 0.17
means in this context.

5. Alpha. A researcher developing scanners to search for
hidden weapons at airports has concluded that a new de-
vice is significantly better than the current scanner. He
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