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CHAPTER

26
Comparing 
Counts

Does your zodiac sign predict how success-
ful you will be later in life? Fortune maga-
zine collected the zodiac signs of 256 heads
of the largest 400 companies. The table

shows the number of births for each sign.
We can see some variation in the number of births

per sign, and there are more Pisces, but is that enough
to claim that successful people are more likely to be
born under some signs than others?

Goodness-of-Fit
If births were distributed uniformly across the year, we would expect about 1/12
of them to occur under each sign of the zodiac. That suggests 256/12, or about
21.3 births per sign. How closely do the observed numbers of births per sign fit
this simple “null” model?

A hypothesis test to address this question is called a test of “goodness-of-fit.”
The name suggests a certain badness-of-grammar, but it is quite standard. After all,
we are asking whether the model that births are uniformly distributed over the signs
fits the data good, . . . er, well. Goodness-of-fit involves testing a hypothesis. We have
specified a model for the distribution and want to know whether it fits. There is no
single parameter to estimate, so a confidence interval wouldn’t make much sense.

If the question were about only one astrological sign (for example, “Are exec-
utives more likely to be Pisces?”1), we could use a one-proportion z-test and ask if

1 A question actually asked us by someone who was undoubtedly a Pisces.

WHO Executives of Fortune
400 companies

WHAT Zodiac birth sign
WHY Maybe the researcher

was a Gemini and 
naturally curious?

Activity: Children at Risk.
See how a contingency table
helps us understand the different
risks to which an incident
exposed children.

“All creatures have their
determined time for giving
birth and carrying fetus, only a
man is born all year long, not
in determined time, one in the
seventh month, the other in the
eighth, and so on till the
beginning of the eleventh
month.”

—Aristotle

Births Sign

23 Aries
20 Taurus
18 Gemini
23 Cancer
20 Leo
19 Virgo
18 Libra
21 Scorpio
19 Sagittarius
22 Capricorn
24 Aquarius
29 Pisces

Birth totals by sign for 256
Fortune 400 executives. 
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Assumptions and Conditions 619

the true proportion of executives with that sign is equal to 1/12. However, here
we have 12 hypothesized proportions, one for each sign. We need a test that con-
siders all of them together and gives an overall idea of whether the observed dis-
tribution differs from the hypothesized one.

Assumptions and Conditions
These data are organized in tables as we saw in Chapter 3, and the assumptions
and conditions reflect that. Rather than having an observation for each individ-
ual, we typically work with summary counts in categories. In our example, we
don’t see the birth signs of each of the 256 executives, only the totals for each sign.

Counted Data Condition: The data must be counts for the categories of a cat-
egorical variable. This might seem a simplistic, even silly condition. But many
kinds of values can be assigned to categories, and it is unfortunately common to
find the methods of this chapter applied incorrectly to proportions, percentages,
or measurements just because they happen to be organized in a table. So check to
be sure the values in each cell really are counts.

Independence Assumption
Independence Assumption: The counts in the cells should be independent of
each other. The easiest case is when the individuals who are counted in the cells
are sampled independently from some population. That’s what we’d like to have
if we want to draw conclusions about that population. Randomness can arise in

Finding expected countsFOR EXAMPLE

Birth month may not be related to success as a CEO, but what about on the ball field? It has been proposed by some researchers that children who are
the older ones in their class at school naturally perform better in sports and that these children then get more coaching and encouragement. Could that
make a difference in who makes it to the professional level in sports?

Baseball is a remarkable sport, in part
because so much data are available. We
have the birth dates of every one of the
16,804 players who ever played in a major
league game. Since the effect we’re sus-
pecting may be due to relatively recent poli-
cies (and to keep the sample size moder-
ate), we’ll consider the birth months of the
1478 major league players born since 1975
and who have played through 2006. We can
also look up the national demographic sta-
tistics to find what percentage of people
were born in each month. Let’s test whether
the observed distribution of ballplayers’ birth months shows just random fluctua-
tions or whether it represents a real deviation from the national pattern.

Question: How can we find the expected counts?

There are 1478 players in this set of data. I’d expect 8% of
them to have been born in January, and . 
I won’t round off, because expected “counts” needn’t be inte-
gers. Multiplying 1478 by each of the birth percentages gives
the expected counts shown in the table.

1478(0.08) = 118.24

Month
Ballplayer

count
National 
birth %

1 137 8%
2 121 7%
3 116 8%
4 121 8%
5 126 8%
6 114 8%

Month
Ballplayer 

count
National 
birth %

7 102 9%
8 165 9%
9 134 9%

10 115 9%
11 105 8%
12 122 9%

Total 1478 100%

Month Expected Month Expected

1 118.24 7 133.02
2 103.46 8 133.02
3 118.24 9 133.02
4 118.24 10 133.02
5 118.24 11 118.24
6 118.24 12 133.02
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NOTATION ALERT:
We compare the counts observed
in each cell with the counts 
we expect to find.The usual
notation uses O’s and E’s or
abbreviations such as those
we’ve used here.The method
for finding the expected counts
depends on the model.

other ways, though. For example, these Fortune 400 executives are not a random
sample, but we might still think that their birth dates are randomly distributed
throughout the year. If we want to generalize to a large population, we should
check the Randomization Condition.

Randomization Condition: The individuals who have been counted should
be a random sample from the population of interest.

Sample Size Assumption
We must have enough data for the methods to work. We usually check the 
following:

Expected Cell Frequency Condition: We should expect to see at least 5 indi-
viduals in each cell.

The Expected Cell Frequency Condition sounds like—and is, in fact, quite
similar to—the condition that np and nq be at least 10 when we tested proportions.
In our astrology example, assuming equal births in each month leads us to expect
21.3 births per month, so the condition is easily met here.

620 CHAPTER 26    Comparing Counts

Calculations
We have observed a count in each category from the data, and have an expected
count for each category from the hypothesized proportions. Are the differences just
natural sampling variability, or are they so large that they indicate something im-
portant? It’s natural to look at the differences between these observed and expected
counts, denoted . We’d like to think about the total of the differences,
but just adding them won’t work because some differences are positive, others neg-
ative. We’ve been in this predicament before—once when we looked at deviations
from the mean and again when we dealt with residuals. In fact, these are residuals.
They’re just the differences between the observed data and the counts given by the
(null) model. We handle these residuals in essentially the same way we did in re-
gression: We square them. That gives us positive values and focuses attention on
any cells with large differences from what we expected. Because the differences be-
tween observed and expected counts generally get larger the more data we have,
we also need to get an idea of the relative sizes of the differences. To do that, we di-
vide each squared difference by the expected count for that cell.

(Obs - Exp)

Checking assumptions and conditionsFOR EXAMPLE

Recap: Are professional baseball players more likely to be born in some months than in others? We have observed and expected counts for the 
1478 players born since 1975.

Question: Are the assumptions and conditions met for performing a goodness-of-fit test?

Ç Counted Data Condition: I have month-by-month counts of ballplayer births.
Ç Independence Assumption: These births were independent.
Ç Randomization Condition: Although they are not a random sample, we can take these players to be representa-

tive of players past and future.
Ç Expected Cell Frequency Condition: The expected counts range from 103.46 to 133.02, all much greater than 5.
Ç 10% Condition: These 1478 players are less than 10% of the population of 16,804 players who have ever played 

(or will play) major league baseball.

It’s okay to use these data for a goodness-of-fit test.
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One-Sided or Two-Sided? 621

The test statistic, called the chi-square (or chi-squared) statistic, is found by
adding up the sum of the squares of the deviations between the observed and
expected counts divided by the expected counts:

The chi-square statistic is denoted , where is the Greek letter chi (pronounced
“ky” as in “sky”). It refers to a family of sampling distribution models we have
not seen before called (remarkably enough) the chi-square models.

This family of models, like the Student’s t-models, differ only in the number
of degrees of freedom. The number of degrees of freedom for a goodness-of-fit
test is . Here, however, n is not the sample size, but instead is the number of
categories. For the zodiac example, we have 12 signs, so our statistic has 11 de-
grees of freedom.

One-Sided or Two-Sided?
The chi-square statistic is used only for testing hypotheses, not for constructing
confidence intervals. If the observed counts don’t match the expected, the statis-
tic will be large. It can’t be “too small.” That would just mean that our model
really fit the data well. So the chi-square test is always one-sided. If the calcu-
lated statistic value is large enough, we’ll reject the null hypothesis. What could
be simpler?

Even though its mechanics work like a one-sided test, the interpretation of a
chi-square test is in some sense many-sided. With more than two proportions,
there are many ways the null hypothesis can be wrong. By squaring the differ-
ences, we made all the deviations positive, whether our observed counts were
higher or lower than expected. There’s no direction to the rejection of the null
model. All we know is that it doesn’t fit.

x2
n - 1

xx2

x2 = a
all cells

(Obs - Exp)2

Exp
.

NOTATION ALERT:
The only use of the Greek letter

in Statistics is to represent this
statistic and the associated
sampling distribution.This is
another violation of our  “rule”
that Greek letters represent
population parameters. Here we
are using a Greek letter simply
to name a family of distribution
models and a statistic.

x

20

Doing a goodness-of-fit testFOR EXAMPLE

Recap: We’re looking at data on the birth months of major league baseball players. We’ve checked the assumptions and conditions for performing a
test.

Questions: What are the hypotheses, and what does the test show?

: The distribution of birth months for major league ballplayers is the same as that for the general population.
: The distribution of birth months for major league ballplayers differs from that of the rest of the population.

Because of the small P-value, I reject ; there’s evidence that birth months of major league ballplayers have a differ-
ent distribution from the rest of us.

H0

 P-value = P(x2
11 Ú 26.48) = 0.0055 (by technology)

 = 26.48 (by technology)

 =
(137 - 118.24)2

118.24
+

(121 - 103.46)2

103.46
+ . . . 

 x2 = a (Obs - Exp)2

Exp

 df = 12 - 1 = 11

HA

HO

x2

15 20 26.480 5 10

The Models. See what a 
model looks like, and watch it
change as you change the degrees
as freedom.

x2X2
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622 CHAPTER 26    Comparing Counts

2 It may seem that we have broken our rule of thumb that null hypotheses should specify
parameter values. If you want to get formal about it, the null hypothesis is that

That is, we hypothesize that the true proportions of births of CEOs under each sign are
equal. The role of the null hypothesis is to specify the model so that we can compute the
test statistic. That’s what this one does.

pAries = pTaurus = Á = pPisces.

We have counts of 256 executives in 12 zodiac sign categories. The natural null hypothesis is that
birth dates of executives are divided equally among all the zodiac signs. The test statistic looks at
how closely the observed data match this idealized situation.

Question: Are zodiac signs of CEOs distributed uniformly?

A Chi-Square Test for Goodness-of-FitSTEP–BY–STEP EXAMPLE

I want to know whether births of successful peo-
ple are uniformly distributed across the signs of
the zodiac. I have counts of 256 Fortune 400
executives, categorized by their birth sign.

: Births are uniformly distributed over zodiac
signs.2

: Births are not uniformly distributed over
zodiac signs.

HA

H0

Plan State what you want to know.

Identify the variables and check the W’s.

Aqr

10

20

30

Sign
PiscesCapScorpioVirgoLeoCancerGeminiTaurusAries Libra Sag

Co
un

t

Hypotheses State the null and alterna-
tive hypotheses. For tests, it’s usually
easier to do that in words than in symbols.

x2

Model Make a picture. The null hypoth-
esis is that the frequencies are equal, so a
bar chart (with a line at the hypothesized
“equal” value) is a good display.

The bar chart shows some variation from sign
to sign, and Pisces is the most frequent. But it
is hard to tell whether the variation is more
than I’d expect from random variation.

Ç Counted Data Condition: I have counts of
the number of executives in 12 categories.

Ç Independence Assumption: The birth
dates of executives should be independent
of each other.

Ç Randomization Condition: This is a con-
venience sample of executives, but there’s
no reason to suspect bias.

Ç Expected Cell Frequency Condition: The
null hypothesis expects that 1/12 of the
256 births, or 21.333, should occur in each
sign. These expected values are all at least
5, so the condition is satisfied.

Think about the assumptions and check
the conditions.

BOCK_C26_0321570448 pp3.qxd  11/29/08  6:42 PM  Page 622



The Chi-Square Calculation 623

The expected value for each zodiac sign is 21.333.

= 5.094 for all 12 signs.

+
(20 - 21.333)2

21.333
+ . . .

x2 = a (Obs - Exp)2

Exp
=

(23 - 21.333)2

21.333

Mechanics Each cell contributes an

value to the chi-square sum.

We add up these components for each zo-
diac sign. If you do it by hand, it can be
helpful to arrange the calculation in a
table. We show that after this Step-By-
Step.

The P-value is the area in the upper tail of
the model above the computed 
value.

The models are skewed to the high
end, and change shape depending on the
degrees of freedom. The P-value considers
only the right tail. Large statistic values
correspond to small P-values, which lead
us to reject the null hypothesis.

x2

x2

x2x2

(Obs - Exp)2

Exp

The conditions are satisfied, so I’ll use a 
model with degrees of freedom and
do a chi-square goodness-of-fit test.

12 - 1 = 11
x2Specify the sampling distribution model.

Name the test you will use.

20155 10

P-value = P(x2 7 5.094) = 0.926

The P-value of 0.926 says that if the zodiac
signs of executives were in fact distributed uni-
formly, an observed chi-square value of 5.09 or
higher would occur about 93% of the time. This
certainly isn’t unusual, so I fail to reject the
null hypothesis, and conclude that these data
show virtually no evidence of nonuniform distri-
bution of zodiac signs among executives.

Conclusion Link the P-value to your 
decision. Remember to state your conclu-
sion in terms of what the data mean,
rather than just making a statement about
the distribution of counts.

The Chi-Square Calculation
Let’s make the chi-square procedure very clear. Here are the steps:

1. Find the expected values. These come from the null hypothesis model. Every
model gives a hypothesized proportion for each cell. The expected value is
the product of the total number of observations times this proportion.

For our example, the null model hypothesizes equal proportions. With 12
signs, 1/12 of the 256 executives should be in each category. The expected
number for each sign is 21.333.

2. Compute the residuals. Once you have expected values for each cell, find the
residuals, .

3. Square the residuals.
4. Compute the components. Now find the component, , for

each cell.

(Observed - Expected)2

Expected

Observed - Expected

Activity: Calculating
Standardized Residuals. Women
were at risk, too. Standardized
residuals help us understand the
relative risks.
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624 CHAPTER 26    Comparing Counts

5. Find the sum of the components. That’s the chi-square statistic.
6. Find the degrees of freedom. It’s equal to the number of cells minus one. For

the zodiac signs, that’s degrees of freedom.
7. Test the hypothesis. Large chi-square values mean lots of deviation from the

hypothesized model, so they give small P-values. Look up the critical value
from a table of chi-square values, or use technology to find the P-value directly.

The steps of the chi-square calculations are often laid out in tables. Use one row
for each category, and columns for observed counts, expected counts, residuals,
squared residuals, and the contributions to the chi-square total like this:

12 - 1 = 11
Activity: The Chi-Square

Test. This animation completes
the calculation of the chi-square
statistic and the hypothesis test
based on it.

TI Tips Testing goodness of fit

As always, the TI makes doing the mechanics of a goodness-of-fit test pretty
easy, but it does take a little work to set it up. Let’s use the zodiac data to run
through the steps for a .

• Enter the counts of executives born under each star sign in .

Those counts were: 23 20 18 23 20 19 18 21 19 22 24 29

• Enter the expected percentages (or fractions, here 1/12) in . In this exam-
ple they are all the same value, but that’s not always the case.

• Convert the expected percentages to expected counts by multiplying each of
them by the total number of observations. We use the calculator’s summa-
tion command in the menu to find the total count for the data
summarized in and then multiply that sum by the percentages stored in

to produce the expected counts. The command is .
(We don’t ever need the percentages again, so we can replace them by stor-
ing the expected counts in instead.)

• Choose from the menu.
• Specify the lists where you stored the observed and expected counts, and en-

ter the number of degrees of freedom, here 11.

x2

x2

Sign Observed Expected
Residual 5

(Obs 2 Exp)
(Obs 2 Exp)2

Component
(Obs 2 Exp)2

Exp

!

Aries 23 21.333 1.667 2.778889 0.130262
Taurus 20 21.333 21.333 1.776889 0.083293
Gemini 18 21.333 23.333 11.108889 0.520737
Cancer 23 21.333 1.667 2.778889 0.130262
Leo 20 21.333 21.333 1.776889 0.083293
Virgo 19 21.333 22.333 5.442889 0.255139
Libra 18 21.333 23.333 11.108889 0.520737
Scorpio 21 21.333 20.333 0.110889 0.005198
Sagittarius 19 21.333 22.333 5.442889 0.255139
Capricorn 22 21.333 0.667 0.444889 0.020854
Aquarius 24 21.333 2.667 7.112889 0.333422
Pisces 29 21.333 7.667 58.782889 2.755491

g 5 5.094
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The Chi-Square Calculation 625

• Ready, set, . . .
• . . . and there are the calculated value of and your P-value.
• Notice, too, there’s a list of values called . You can scroll across

them, or use to display them as a data list (as seen on the
next page). Those are the cell-by-cell components of the calculation. We
aren’t very interested in them this time, because our data failed to provide
evidence that the zodiac sign mattered. However, in a situation where we
rejected the null hypothesis, we’d want to look at the components to see
where the biggest effects occurred. You’ll read more about doing that later
in this chapter.

By hand?
If there are only a few cells, you may find that it’s just as easy to write out the
formula and then simply use the calculator to help you with the arithmetic. After
you have found you can use your TI to find the P-value, the 
probability of observing a value at least as high as the one you calculated
from your data. As you probably expect, that process is akin to 
and . You’ll find what you need in the menu at : 2 . Just
specify the left and right boundaries and the number of degrees of freedom.

• Enter 2 , as shown. (Why 999? Unlike t and z,
chi-square values can get pretty big, especially when there are many cells.
You may need to go a long way to the right to get to where the curve’s tail
becomes essentially meaningless. You can see what we mean by looking at
Table C, showing chi-square values.)

And there’s the P-value, a whopping 0.93! There’s nothing at all unusual about
these data. (So much for the zodiac’s predictive power.)

x2
x2 = 5.09375

x2

x2

How big is big? When we calculated for the zodiac sign example, we got
5.094. That value would have been big for z or t, leading us to reject the null hy-
pothesis. Not here. Were you surprised that had a huge P-value of
0.926? What is big for a statistic, anyway?

Think about how is calculated. In every cell, any deviation from the expected
count contributes to the sum. Large deviations generally contribute more, but if
there are a lot of cells, even small deviations can add up, making the value x2

x2
x2

x2 = 5.094

x2

0 5 10 15 20

df = 5 df = 9

Notice that the value might seem somewhat extreme when there are 5 de-
grees of freedom, but appears to be rather ordinary for 9 degrees of freedom. Here
are two simple facts to help you think about models:x2

x2 = 10

Lesson: The Chi-Square
Family of Curves. (Not an activity
like the others, but there’s no
better way to see how changes
with more df.) Click on the Lesson
Book’s Resources tab and open
the chi-square table. Watch the
curve at the top as you click on 
a row and scroll down the
degrees-of freedom column.

x2

larger. So the more cells there are, the higher the value of has to get before it x2

becomes noteworthy. For , then, the decision about how big is big depends on
the number of degrees of freedom.

Unlike the Normal and t families, models are skewed. Curves in the family
change both shape and center as the number of degrees of freedom grows. Here,
for example, are the curves for 5 and 9 degrees of freedom.x2

x2x2

x2
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626 CHAPTER 26    Comparing Counts

But I Believe the Model . . .
Goodness-of-fit tests are likely to be performed by people who have a theory of
what the proportions should be in each category and who believe their theory to
be true. Unfortunately, the only null hypothesis available for a goodness-of-fit test
is that the theory is true. And as we know, the hypothesis-testing procedure al-
lows us only to reject the null or fail to reject it. We can never confirm that a theory
is in fact true, which is often what people want to do.

Unfortunately, they’re stuck. At best, we can point out that the data are con-
sistent with the proposed theory. But this doesn’t prove the theory. The data could
be consistent with the model even if the theory were wrong. In that case, we fail
to reject the null hypothesis but can’t conclude anything for sure about whether
the theory is true.

And we can’t fix the problem by turning things around. Suppose we try to
make our favored hypothesis the alternative. Then it is impossible to pick a single
null. For example, suppose, as a doubter of astrology, you want to prove that the
distribution of executive births is uniform. If you choose uniform as the null hy-
pothesis, you can only fail to reject it. So you’d like uniformity to be your alterna-
tive hypothesis. Which particular violation of equally distributed births would
you choose as your null? The problem is that the model can be wrong in many,
many ways. There’s no way to frame a null hypothesis the other way around.
There’s just no way to prove that a favored model is true.

u The mode is at . (Look back at the curves; their peaks are at 3 and 7,
see?)

u The expected value (mean) of a model is its number of degrees of freedom.
That’s a bit to the right of the mode—as we would expect for a skewed distribu-
tion.

Our test for zodiac birthdays had 11 df, so the relevant curve peaks at 9 and has
a mean of 11. Knowing that, we might have easily guessed that the calculated 
value of 5.094 wasn’t going to be significant.

x2
x2

x2

x2 = df - 2

Why can’t we prove the null? A biologist wanted to show that her inheri-
tance theory about fruit flies is valid. It says that 10% of the flies should be type 1,
70% type 2, and 20% type 3. After her students collected data on 100 flies, she
did a goodness-of-fit test and found a P-value of 0.07. She started celebrating,
since her null hypothesis wasn’t rejected—that is, until her students collected data
on 100 more flies. With 200 flies, the P-value dropped to 0.02. Although she knew
the answer was probably no, she asked the statistician somewhat hopefully if she
could just ignore half the data and stick with the original 100. By this reasoning we
could always “prove the null” just by not collecting much data. With only a little
data, the chances are good that they’ll be consistent with almost anything. But they
also have little chance of disproving anything either. In this case, the test has no
power. Don’t let yourself be lured into this scientist’s reasoning. With data, more is
always better. But you can’t ever prove that your null hypothesis is true.

Comparing Observed Distributions
Many colleges survey graduating classes to determine the plans of the graduates.
We might wonder whether the plans of students are the same at different colleges.
Here’s a two-way table for Class of 2006 graduates from several colleges at one
university. Each cell of the table shows how many students from a particular col-
lege made a certain choice.
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Assumptions and Conditions 627

Because class sizes are so different, we see differences better by examining the
proportions for each class rather than the counts:

WHO Graduates from 
4 colleges at an 
upstate New 
York university

WHAT Post-graduation 
activities

WHEN 2006
WHY Survey for general 

information

Video: The Incident. You
may have guessed which famous
incident put women and children
at risk. Here you can view the
story complete with rare film
footage.

We already know how to test whether two proportions are the same. For 
example, we could use a two-proportion z-test to see whether the proportion of
students choosing graduate school is the same for Agriculture students as for En-
gineering students. But now we have more than two groups. We want to test
whether the students’ choices are the same across all four colleges. The z-test for
two proportions generalizes to a chi-square test of homogeneity.

Chi-square again? It turns out that the mechanics of this test are identical to
the chi-square test for goodness-of-fit that we just saw. (How similar can you
get?) Why a different name, then? The goodness-of-fit test compared counts
with a theoretical model. But here we’re asking whether choices are the same
among different groups, so we find the expected counts for each category di-
rectly from the data. As a result, we count the degrees of freedom slightly dif-
ferently as well.

The term “homogeneity” means that things are the same. Here, we ask
whether the post-graduation choices made by students are the same for these
four colleges. The homogeneity test comes with a built-in null hypothesis: We
hypothesize that the distribution does not change from group to group. The test
looks for differences large enough to step beyond what we might expect from
random sample-to-sample variation. It can reveal a large deviation in a single
category or small, but persistent, differences over all the categories—or any-
thing in between.

Assumptions and Conditions
The assumptions and conditions are the same as for the chi-square test for goodness-
of-fit. The Counted Data Condition says that these data must be counts. You
can’t do a test of homogeneity on proportions, so we have to work with the
counts of graduates given in the first table. Also, you can’t do a chi-square test
on measurements. For example, if we had recorded GPAs for these same groups,

Agriculture
Arts & 

Sciences Engineering Social Science Total

Employed 379 305 243 125 1052
Grad School 186 238 202 96 722
Other 104 123 37 58 322
Total 669 666 482 279 2096

Table 26.1 Post-graduation activities of the class of 2006 for several colleges of a large university.

Agriculture
Arts & 

Sciences Engineering Social Science Total

Employed 56.7% 45.8% 50.4% 44.8% 50.2
Grad School 27.8 35.7 41.9 34.4 34.4
Other 15.5 18.5 7.7 20.8 15.4
Total 100 100 100 100 100

Table 26.2 Activities of graduates as a percentage of respondents from each college.
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628 CHAPTER 26    Comparing Counts

3 To do that, you’d use a method called Analysis of Variance, discussed in a supplementary
chapter on the DVD and in ActivStats.

we wouldn’t be able to determine whether the mean GPAs were different using
this test.3

Often when we test for homogeneity, we aren’t interested in some larger pop-
ulation, so we don’t really need a random sample. (We would need one if we
wanted to draw a more general conclusion—say, about the choices made by all
members of the Class of ’06.) Don’t we need some randomness, though? Fortu-
nately, the null hypothesis can be thought of as a model in which the counts in the
table are distributed as if each student chose a plan randomly according to the
overall proportions of the choices, regardless of the student’s class. As long as we
don’t want to generalize, we don’t have to check the Randomization Condition
or the 10% Condition.

We still must be sure we have enough data for this method to work. The
Expected Cell Frequency Condition says that the expected count in each cell
must be at least 5. We’ll confirm that as we do the calculations.

Calculations
The null hypothesis says that the proportions of graduates choosing each alterna-
tive should be the same for all four colleges, so we can estimate those overall pro-
portions by pooling our data from the four colleges together. Within each college,
the expected proportion for each choice is just the overall proportion of all stu-
dents making that choice. The expected counts are those proportions applied to
the number of students in each graduating class.

For example, overall, 1052, or about 50.2%, of the 2096 students who re-
sponded to the survey were employed. If the distributions are homogeneous (as
the null hypothesis asserts), then 50.2% of the 669 Agriculture school graduates
(or about 335.8 students) should be employed. Similarly, 50.2% of the 482 Engi-
neering grads (or about 241.96) should be employed.

Working in this way, we (or, more likely, the computer) can fill in expected
values for each cell. Because these are theoretical values, they don’t have to be in-
tegers. The expected values look like this:

Now check the Expected Cell Frequency Condition. Indeed, there are at least
5 individuals expected in each cell.

Following the pattern of the goodness-of-fit test, we compute the component
for each cell of the table. For the highlighted cell, employed students graduating
from the Ag school, that’s

(Obs - Exp)2

Exp
=

(379 - 335.777)2

335.777
= 5.564

Agriculture
Arts & 

Sciences Engineering Social Science Total

Employed 335.777 334.271 241.920 140.032 1052
Grad School 230.448 229.414 166.032 96.106 722
Other 102.776 102.315 74.048 42.862 322
Total 669 666 482 279 2096

Table 26.3 Expected values for the ’06 graduates.

BOCK_C26_0321570448 pp3.qxd  11/29/08  6:42 PM  Page 628



Calculations 629

Summing these components across all cells gives

How about the degrees of freedom? We don’t really need to calculate all the
expected values in the table. We know there is a total of 1052 employed students,
so once we find the expected values for three of the colleges, we can determine
the expected number for the fourth by just subtracting. Similarly, we know how
many students graduated from each college, so after filling in three rows, we can
find the expected values for the remaining row by subtracting. To fill out the table,
we need to know the counts in only rows and columns. So the table
has degrees of freedom.

In our example, we need to calculate only 2 choices in each column and
counts for 3 of the 4 colleges, for a total of degrees of freedom. We’ll
need the degrees of freedom to find a P-value for the chi-square statistic.

2 * 3 = 6

(R - 1)(C - 1)
C - 1R - 1

x2 = a
all cells

(Obs - Exp)2

Exp
= 54.51

NOTATION ALERT:
For a contingency table, R
represents the number of rows
and C the number of columns.

We have reports from four colleges on the post-graduation activities of their 2006 graduating
classes.

Question: Are students’ choices of post-graduation activities the same across all the colleges?

A Chi-Square Test for HomogeneitySTEP–BY–STEP EXAMPLE

I want to know whether post-graduation
choices are the same for students from each
of four colleges. I have a table of counts classi-
fying each college’s Class of 2006 respondents
according to their activities.

: Students’ post-graduation activities are
distributed in the same way for all four 
colleges.

: Students’ plans do not have the same 
distribution.

HA

H0

Plan State what you want to know.

Identify the variables and check the W’s.

A side-by-side bar chart shows how the distribu-
tions of choices differ across the four colleges.

Hypotheses State the null and alterna-
tive hypotheses.

60

50

40

30

20

10

0
Agriculture Arts & Sciences Engineering Social Science

Employed
Grad School
Other

College

Pe
rc

en
t

Post-Graduation ActivitiesModel Make a picture: A side-by-side
bar chart shows the four distributions of
post-graduation activities. Plot column
percents to remove the effect of class size
differences. A split bar chart would also
be an appropriate choice.
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630 CHAPTER 26    Comparing Counts

 = 54.52

 =
(379 - 335.777)2

335.777
+ . . .

 x2 = a
all cells

(Obs - Exp)2

Exp

Mechanics Show the expected counts
for each cell of the data table. You could
make separate tables for the observed and
expected counts, or put both counts in
each cell as shown here. While observed
counts must be whole numbers, expected
counts rarely are—don’t be tempted to
round those off.

Calculate .x2

Ç Counted Data Condition: I have counts of
the number of students in categories.

Ç Independence Assumption: Student plans
should be largely independent of each
other. The occasional friends who decide to
join Teach for America together or couples
who make grad school decisions together
are too rare to affect this analysis.

Ç Randomization Condition: I don’t want to
draw inferences to other colleges or other
classes, so there is no need to check for a
random sample.

Ç Expected Cell Frequency Condition: The 
expected values (shown below) are all at
least 5.

The conditions seem to be met, so I can use a
model with degrees

of freedom and do a chi-square test of 
homogeneity.

(3 - 1) * (4 - 1) = 6x2

Think about the assumptions and check
the conditions.

State the sampling distribution model
and name the test you will use.

Ag A&S Eng

Empl.

Grad
sch.

Other

379

335.777

186

104

305

238

123

334.271

243

202

37

241.920

Soc Sci
125

96

58

140.032

230.448 229.414 166.032 96.106

102.776 102.315 74.048 42.862

0 5 10 15

P-value = P(x2 7 54.52) 6 0.0001

The P-value considers only the right tail.
Here, the calculated value of the statistic
is off the scale, so the P-value is quite small.

x2

The P-value is very small, so I reject the null hypoth-
esis and conclude that there’s evidence that the
post-graduation activities of students from these
four colleges don’t have the same distribution.

Conclusion State your conclusion in the
context of the data. You should specifi-
cally talk about whether the distributions
for the groups appear to be different.

The shape of a model depends on the
degrees of freedom. A model with 6 df
is skewed to the high end.

x2
x2

BOCK_C26_0321570448 pp3.qxd  11/29/08  6:42 PM  Page 630



Examining the Residuals 631

If you find that simply rejecting the hypothesis of homogeneity is a bit unsatisfy-
ing, you’re in good company. Ok, so the post-graduation plans are different. What
we’d really like to know is what the differences are, where they’re the greatest,
and where they’re smallest. The test for homogeneity doesn’t answer these inter-
esting questions, but it does provide some evidence that can help us.

Examining the Residuals
Whenever we reject the null hypothesis, it’s a good idea to examine residuals. (We
don’t need to do that when we fail to reject because when the value is small, all
of its components must have been small.) For chi-square tests, we want to com-
pare residuals for cells that may have very different counts. So we’re better off
standardizing the residuals. We know the mean residual is zero,4 but we need to
know each residual’s standard deviation. When we tested proportions, we saw a
link between the expected proportion and its standard deviation. For counts,
there’s a similar link. To standardize a cell’s residual, we just divide by the square
root of its expected value:

Notice that these standardized residuals are just the square roots of the
components we calculated for each cell, and their sign indicates whether we ob-
served more cases than we expected, or fewer.

The standardized residuals give us a chance to think about the underlying
patterns and to consider the ways in which the distribution of post-graduation
plans may differ from college to college. Now that we’ve subtracted the mean
(zero) and divided by their standard deviations, these are z-scores. If the null hy-
pothesis were true, we could even appeal to the Central Limit Theorem, think of
the Normal model, and use the 68–95–99.7 Rule to judge how extraordinary the
large ones are.

Here are the standardized residuals for the Class of ’06 data:

c =
(Obs - Exp)2Exp

.

x2

The column for Engineering students immediately attracts our attention. It holds
both the largest positive and the largest negative standardized residuals. It looks
like Engineering college graduates are more likely to go on to graduate work and
very unlikely to take time off for “volunteering and travel, among other activi-
ties” (as the “Other” category is explained). By contrast, Ag school graduates
seem to be readily employed and less likely to pursue graduate work immedi-
ately after college.

4 Residual observed expected. Because the total of the expected values is set to be the
same as the observed total, the residuals must sum to zero.

-=

Ag A&S Eng Soc Sci

Employed 2.359 21.601 0.069 21.270
Grad School 22.928 0.567 2.791 20.011
Other 0.121 2.045 24.305 2.312

Table 26.4

Standardized residuals can
help show how the table differs
from the null hypothesis 
pattern.
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632 CHAPTER 26    Comparing Counts

Independence
A study from the University of Texas Southwestern Medical Center examined
whether the risk of hepatitis C was related to whether people had tattoos and to
where they got their tattoos. Hepatitis C causes about 10,000 deaths each year in
the United States, but often lies undetected for years after infection.

The data from this study can be summarized in a two-way table, as follows:

Looking at residualsx2FOR EXAMPLE

Recap: Some people suggest that school children who are the older ones in their class
naturally perform better in sports and therefore get more coaching and encouragement. To
see if there’s any evidence for this, we looked at major league baseball players born since
1975. A goodness-of-fit test found their birth months to have a distribution that’s signifi-
cantly different from the rest of us. The table shows the standardized residuals.

Question: What’s different about the distribution of birth months among major league
ballplayers?

It appears that, compared to the general population, fewer ballplayers
than expected were born in July and more than expected in August. Either month would make them the younger kids in
their grades in school, so these data don’t offer support for the conjecture that being older is an advantage in terms
of a career as a pro athlete.

JUST CHECKING
Tiny black potato flea beetles can damage potato plants in a vegetable garden. These pests chew holes in the

leaves, causing the plants to wither or die. They can be killed with an insecticide, but a canola oil spray has been sug-
gested as a non-chemical “natural” method of controlling the beetles. To conduct an experiment to test the effective-
ness of the natural spray, we gather 500 beetles and place them in three Plexiglas® containers. Two hundred beetles go
in the first container, where we spray them with the canola oil mixture. Another 200 beetles go in the second container;
we spray them with the insecticide. The remaining 100 beetles in the last container serve as a control group; we simply
spray them with water. Then we wait 6 hours and count the number of surviving beetles in each container.
1. Why do we need the control group?
2. What would our null hypothesis be?
3. After the experiment is over, we could summa-

rize the results in a table as shown. How many
degrees of freedom does our test have?

4. Suppose that, all together, 125 beetles survived.
(That’s the first-row total.) What’s the expected
count in the first cell—survivors among those
sprayed with the natural spray?

5. If it turns out that only 40 of the beetles in the first container survived, what’s the calculated component of for
that cell?

6. If the total calculated value of for this table turns out to be around 10, would you expect the P-value of our test
to be large or small? Explain.

x2

x2

x2

Month Residual Month Residual

1 1.73 7 -2.69
2 1.72 8 2.77
3 -0.21 9 0.08
4 0.25 10 -1.56
5 0.71 11 -1.22
6 -0.39 12 -0.96

Natural spray Insecticide Water Total

Survived
Died
Total 200 200 100 500
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These data differ from the kinds of data we’ve considered before in this chapter
because they categorize subjects from a single group on two categorical variables
rather than on only one. The categorical variables here are Hepatitis C Status
(“Hepatitis C” or “No Hepatitis C”) and Tattoo Status (“Parlor,” “Elsewhere,”
“None”). We’ve seen counts classified by two categorical variables displayed
like this in Chapter 3, so we know such tables are called contingency tables.
Contingency tables categorize counts on two (or more) variables so that we can
see whether the distribution of counts on one variable is contingent on the other.

The natural question to ask of these data is whether the chance of having
hepatitis C is independent of tattoo status. Recall that for events A and B to be 
independent P(A) must equal P(A|B). Here, this means the probability that a
randomly selected patient has hepatitis C should not change when we learn the
patient’s tattoo status. We examined the question of independence in just this way
back in Chapter 15, but we lacked a way to test it. The rules for independent
events are much too precise and absolute to work well with real data. A chi-square
test for independence is called for here.

If Hepatitis Status is independent of tattoos, we’d expect the proportion of
people testing positive for hepatitis to be the same for the three levels of Tattoo
Status. This sounds a lot like the test of homogeneity. In fact, the mechanics of the
calculation are identical.

The difference is that now we have two categorical variables measured on a
single population. For the homogeneity test, we had a single categorical variable
measured independently on two or more populations. But now we ask a different
question: “Are the variables independent?” rather than “Are the groups homoge-
neous?” These are subtle differences, but they are important when we state hy-
potheses and draw conclusions.

WHO Patients being treated
for non–blood-related
disorders

WHAT Tattoo status and 
hepatitis C status

WHEN 1991, 1992
WHERE Texas

Table 26.5

Counts of patients classi-
fied by their hepatitis C test
status according to whether
they had a tattoo from a tat-
too parlor or from another
source, or had no tattoo.

Activity: Independence
and Chi-Square. This unusual
simulation shows how
independence arises (and fails) 
in contingency tables.

The only difference between
the test for homogeneity and
the test for independence is
in what you . . .

Which test?x2FOR EXAMPLE

Many states and localities now collect data on traffic stops regarding the race of
the driver. The initial concern was that Black drivers were being stopped more
often (the “crime” ironically called “Driving While Black”). With more data in
hand, attention has turned to other issues. For example, data from 2533 traffic
stops in Cincinnati5 report the race of the driver (Black, White, or Other) and
whether the traffic stop resulted in a search of the vehicle.

Question: Which test would be appropriate to examine whether race is a factor
in vehicle searches? What are the hypotheses?

5 John E. Eck, Lin Liu, and Lisa Growette Bostaph, Police Vehicle Stops in Cincinnati, Oct. 1,
2003, available at http://www.cincinnati-oh.gov. Data for other localities can be found by
searching from http://www.racialprofilinganalysis.neu.edu.

(continued)

Hepatitis C No Hepatitis C Total

Tattoo, parlor 17 35 52

Tattoo, elsewhere 8 53 61

None 22 491 513

Total 47 579 626

Race

Black White Other Total

Se
ar

ch

No 787 594 27 1408
Yes 813 293 19 1125

Total 1600 887 46 2533
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634 CHAPTER 26    Comparing Counts

Assumptions and Conditions
Of course, we still need counts and enough data so that the expected values are at
least 5 in each cell.

If we’re interested in the independence of variables, we usually want to general-
ize from the data to some population. In that case, we’ll need to check that the data
are a representative random sample from, and fewer than 10% of, that population.

6 Once again, parameters are hard to express. The hypothesis of independence itself tells
us how to find expected values for each cell of the contingency table. That’s all we need.

These data represent one group of traffic stops in Cincinnati, categorized on two variables, Race and Search. I’ll do a
chi-square test of independence.

: Whether or not police search a vehicle is independent of the race of the driver.
: Decisions to search vehicles are not independent of the driver’s race.HA

H0

For Example (continued)

We have counts of 626 individuals categorized according to their  “tattoo status” and their “hepa-
titis status.”

Question: Are tattoo status and hepatitis status independent?

A Chi-Square Test for IndependenceSTEP–BY–STEP EXAMPLE

I want to know whether the categorical vari-
ables Tattoo Status and Hepatitis Status
are statistically independent. I have a contin-
gency table of 626 Texas patients with an
unrelated disease.

Plan State what you want to know.

Identify the variables and check the W’s.

Hypotheses State the null and alterna-
tive hypotheses.

: Tattoo Status and Hepatitis Status are
independent.6

: Tattoo Status and Hepatitis Status are
not independent.

HA

H0We perform a test of independence when
we suspect the variables may not be inde-
pendent. We are on the familiar ground of
making a claim (in this case, that know-
ing Tattoo Status will change probabilities
for Hepatitis C Status) and testing the null
hypothesis that it is not true.

Model Make a picture. Because these are
only two categories—Hepatitis C and No
Hepatitis C—a simple bar chart of the
distribution of tattoo sources for Hep C
patients shows all the information.

No Tattoo Tattoo
Parlor

Tattoo
Elsewhere

Tattoo Status

Tattoos and Hepatitis C

Pr
op

or
tio

n 
In

fe
ct

ed

10
15
20

35
30
25

5
0

Activity: Chi-Square
Tables. Work with ActivStats’
interactive chi-square table to
perform a hypothesis test.

The bar chart suggests strong differences in
Hepatitis C risk based on tattoo status.
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Ç Counted Data Condition: I have counts of
individuals categorized on two variables.

Ç Independence Assumption: The people in
this study are likely to be independent of
each other.

Ç Randomization Condition: These data are
from a retrospective study of patients be-
ing treated for something unrelated to
hepatitis. Although they are not an SRS,
they were selected to avoid biases.

Ç 10% Condition: These 626 patients are far
fewer than 10% of all those with tattoos or
hepatitis.

I Expected Cell Frequency Condition: The
expected values do not meet the condition
that all are at least 5.

Think about the assumptions and check
the conditions.

Although the Expected Cell Frequency Condition
is not satisfied, the values are close to 5. I’ll go
ahead, but I’ll check the residuals carefully. I’ll
use a model with df
and do a chi-square test of independence.

(3 - 1) * (2 - 1) = 2x2

This table shows both the observed and
expected counts for each cell. The ex-
pected counts are calculated exactly as
they were for a test of homogeneity; in
the first cell, for example, we expect 
(that’s 8.3%) of 47.

Warning: Be wary of proceeding when
there are small expected counts, If we see
expected counts that fall far short of 5, or
if many cells violate the condition, we
should not use . (We will soon discuss
ways you can fix the problem.) If you do
continue, always check the residuals to be
sure those cells did not have a major in-
fluence on your result.

Specify the model.

Name the test you will use.

x2

52
626

 =
(17 - 3.094)2

3.094
+ . . . = 57.91

 x2 = a
all cells

(Obs - Exp)2

Exp
Mechanics Calculate .

The shape of a chi-square model depends
on its degrees of freedom. With 2 df, the
model looks quite different, as you can

x2

Hepatitis C No Hepatitis C Total

Tattoo, 17 35 52
parlor 3.904 48.096

Tattoo, 8 53 61
elsewhere 4.580 56.420

None 22 491 513
38.516 474.484

Total 47 579 626
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The P-value is very small, so I reject the null hy-
pothesis and conclude that Hepatitis Status
is not independent of Tattoo Status. Because
the Expected Cell Frequency Condition was vio-
lated, I need to check that the two cells with
small expected counts did not influence this re-
sult too greatly.

Conclusion Link the P-value to your de-
cision. State your conclusion about the
independence of the two variables.

(We should be wary of this conclusion 
because of the small expected counts. A
complete solution must include the addi-
tional analysis, recalculation, and final
conclusion discussed in the following 
section.)

see here. We still care only about the
right tail.

0 2 4 6 8

P-Value = P(x2 7 57.91) 6 0.0001

Chi-square mechanicsFOR EXAMPLE

Recap: We have data that allow us to investigate whether police searches of vehi-
cles they stop are independent of the driver’s race.

Questions: What are the degrees of freedom for this test? What is the expected fre-
quency of searches for the Black drivers who were stopped? What’s that cell’s com-
ponent in the computation? And how is the standardized residual for that cell
computed?

This is a contingency table, so 
Overall, 1125 of 2533 vehicles were searched. If searches are conducted independent of race, then I’d expect of 

the 1600 Black drivers to have been searched: .

That cell’s term in the calculation is 

The standardized residual for that cell is 
Obs - Exp2Exp

= 813 - 710.622710.62
= 3.84

(Obs - Exp)2

Exp
=

(813 - 710.62)2

710.62
= 14.75x2

1125
2533

* 1600 L 710.62

1125
2533

df = (2 - 1)(3 - 1) = 2.2 * 3

x2

Examine the Residuals
Each cell of the contingency table contributes a term to the chi-square sum. As
we did earlier, we should examine the residuals because we have rejected the
null hypothesis. In this instance, we have an additional concern that the cells
with small expected frequencies not be the ones that make the chi-square statis-
tic large.

Race

Black White Other Total

Se
ar

ch

No 787 594 27 1408
Yes 813 293 19 1125

Total 1600 887 46 2533
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Our interest in the data arises from the potential for improving public health.
If patients with tattoos are more likely to test positive for hepatitis C, perhaps
physicians should be advised to suggest blood tests for such patients.

The standardized residuals look like this:

The chi-square value of 57.91 is the sum of the squares of these six values. The
cell for people with tattoos obtained in a tattoo parlor who have hepatitis C is
large and positive, indicating there are more people in that cell than the null
hypothesis of independence would predict. Maybe tattoo parlors are a source
of infection or maybe those who go to tattoo parlors also engage in risky be-
havior.

The second-largest component is a negative value for those with no tattoos
who test positive for hepatitis C. A negative value says that there are fewer peo-
ple in this cell than independence would expect. That is, those who have no tat-
toos are less likely to be infected with hepatitis C than we might expect if the two
variables were independent.

What about the cells with small expected counts? The formula for the chi-
square standardized residuals divides each residual by the square root of the ex-
pected frequency. Too small an expected frequency can arbitrarily inflate the
residual and lead to an inflated chi-square statistic. Any expected count close to
the arbitrary minimum of 5 calls for checking that cell’s standardized residual to
be sure it is not particularly large. In this case, the standardized residual for the
“Hepatitis C and Tattoo, elsewhere” cell is not particularly large, but the stan-
dardized residual for the “Hepatitis C and Tattoo, parlor” cell is large.

We might choose not to report the results because of concern with the small
expected frequency. Alternatively, we could include a warning along with our re-
port of the results. Yet another approach is to combine categories to get a larger
sample size and correspondingly larger expected frequencies, if there are some
categories that can be appropriately combined. Here, we might naturally combine
the two rows for tattoos, obtaining a table:2 * 2

AGAIN

Table 26.6

Standardized residuals for 
the hepatitis and tattoos data.
Are any of them particularly
large in magnitude?

MORE

Table 26.7

Combining the two tattoo
categories gives a table with
all expected counts greater
than 5.

This table has expected values of at least 5 in every cell, and a chi-square value of
42.42 on 1 degree of freedom. The corresponding P-value is

We conclude that Tattoo Status and Hepatitis C Status are not independent. The
data suggest that tattoo parlors may be a particular problem, but we haven’t
enough data to draw that conclusion.

60.0001.

ALL

Hepatitis C No Hepatitis C

Tattoo, parlor 6.628 -1.888

Tattoo, elsewhere 1.598 -0.455

None -2.661 0.758

Hepatitis C No Hepatitis C Total

Tattoo 25 88 113

None 22 491 513

Total 47 579 626
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Writing conclusions for testsx2FOR EXAMPLE

Recap: We’re looking at Cincinnati traffic stop data to see if police decisions
about searching cars show evidence of racial bias. With 2 df, technology 
calculates , a P-value less than 0.0001, and these standardized
residuals:

Question: What’s your conclusion?

The very low P-value leads me to reject the null hypothesis.
There’s strong evidence that police decisions to search cars at traffic stops are associated with the driver’s race.
The largest residuals are for White drivers, who are searched less often than independence would predict. It appears
that Black drivers’ cars are searched more often.

x2 = 73.25

TI Tips Testing homogeneity or independence

Yes, the TI will do chi-square tests of homogeneity and independence. Let’s use
the tattoo data. Here goes.

Test a hypothesis of homogeneity or independence
Stage 1: You need to enter the data as a matrix. A “matrix” is just a formal
mathematical term for a table of numbers.

• Push the button, and choose to matrix .
• First specify the dimensions of the table, rows coloumns.
• Enter the appropriate counts, one cell at a time. The calculator automatically

asks for them row by row.

Stage 2: Do the test.

• In the menu choose .
• The TI now confirms that you have placed the observed frequencies in .

It also tells you that when it finds the expected frequencies it will store those
in for you. Now the mechanics of the test.

The TI reports a calculated value of and an exceptionally small 
P-value.

Stage 3: Check the expected counts.

• Go back to and choose .

Notice that two of the cells fail to meet the condition that expected counts be at
least 5. This problem enters into our analysis and conclusions.

Stage 4: And now some bad news. There’s no easy way to calculate the stan-
dardized residuals. Look at the two matrices, and . Large residuals
will happen when the corresponding entries differ greatly, especially when the
expected count in is small (because you will divide by the square root of
the entry in ). The first cell is a good candidate, so we show you the calcu-
lation of its standardized residual.

A residual of over 6 is pretty large—possibly an indication that you’re more
likely to get hepatitis in a tattoo parlor, but the expected count is smaller that 5.
We’re pretty sure that hepatitis status is not independent of having a tattoo, but
we should be wary of saying anything more. Probably the best approach is to
combine categories to get cells with expected counts above 5.

x2 = 57.91

Se
ar

ch

Race

Black White Other

No –3.43 4.55 0.28
Yes 3.84 –5.09 –0.31
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Chi-Square and Causation
Chi-square tests are common. Tests for independence are especially widespread.
Unfortunately, many people interpret a small P-value as proof of causation. We
know better. Just as correlation between quantitative variables does not demon-
strate causation, a failure of independence between two categorical variables does
not show a cause-and-effect relationship between them, nor should we say that
one variable depends on the other.

The chi-square test for independence treats the two variables symmetrically.
There is no way to differentiate the direction of any possible causation from one
variable to the other. In our example, it is unlikely that having hepatitis causes
one to crave a tattoo, but other examples are not so clear.

In this case it’s easy to imagine that lurking variables are responsible for the
observed lack of independence. Perhaps the lifestyles of some people include
both tattoos and behaviors that put them at increased risk of hepatitis C, such as
body piercings or even drug use. Even a small subpopulation of people with such
a lifestyle among those with tattoos might be enough to create the observed re-
sult. After all, we observed only 25 patients with both tattoos and hepatitis.

In some sense, a failure of independence between two categorical variables is
less impressive than a strong, consistent, linear association between quantitative
variables. Two categorical variables can fail the test of independence in many ways,
including ways that show no consistent pattern of failure. Examination of the chi-
square standardized residuals can help you think about the underlying patterns.

JUST CHECKING
Which of the three chi-square tests—goodness-of-fit, homogeneity, or independence—would you use in each of

the following situations?
7. A restaurant manager wonders whether customers who dine on Friday nights have the same preferences among

the four “chef’s special” entrées as those who dine on Saturday nights. One weekend he has the wait staff record
which entrées were ordered each night. Assuming these customers to be typical of all weekend diners, he’ll com-
pare the distributions of meals chosen Friday and Saturday.

8. Company policy calls for parking spaces to be assigned to everyone at random, but you suspect that may not be
so. There are three lots of equal size: lot A, next to the building; lot B, a bit farther away; and lot C, on the other
side of the highway. You gather data about employees at middle management level and above to see how many
were assigned parking in each lot.

9. Is a student’s social life affected by where the student lives? A campus survey asked a random sample of students
whether they lived in a dormitory, in off-campus housing, or at home, and whether they had been out on a date 0,
1–2, 3–4, or 5 or more times in the past two weeks.

WHAT CAN GO WRONG?
u Don’t use chi-square methods unless you have counts. All three of the chi-square tests ap-

ply only to counts. Other kinds of data can be arrayed in two-way tables. Just be-
cause numbers are in a two-way table doesn’t make them suitable for chi-square
analysis. Data reported as proportions or percentages can be suitable for chi-square
procedures, but only after they are converted to counts. If you try to do the calculations
without first finding the counts, your results will be wrong.

(continued)
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640 CHAPTER 26    Comparing Counts

u Beware large samples. Beware large samples?! That’s not the advice you’re used to
hearing. The chi-square tests, however, are unusual. You should be wary of chi-
square tests performed on very large samples. No hypothesized distribution fits per-
fectly, no two groups are exactly homogeneous, and two variables are rarely per-
fectly independent. The degrees of freedom for chi-square tests don’t grow with the
sample size. With a sufficiently large sample size, a chi-square test can always reject
the null hypothesis. But we have no measure of how far the data are from the null
model. There are no confidence intervals to help us judge the effect size.

u Don’t say that one variable “depends” on the other just because they’re not independent.
Dependence suggests a pattern and implies causation, but variables can fail to be in-
dependent in many different ways. When variables fail the test for independence,
you might just say they are “associated.”

Simulation: Sample Size
and Chi-Square. Chi-square
statistics have a peculiar problem.
They don’t respond to increasing
the sample size in quite the same
way you might expect.

CONNECTIONS
Chi-square methods relate naturally to inference methods for proportions. We can think of a test of
homogeneity as stepping from a comparison of two proportions to a question of whether three or
more proportions are equal. The standard deviations of the residuals in each cell are linked to the
expected counts much like the standard deviations we found for proportions.

Independence is, of course, a fundamental concept in Statistics. But chi-square tests do not offer
a general way to check on independence for all those times when we have had to assume it.

Stacked bar charts or side-by-side pie charts can help us think about patterns in two-way tables.
A histogram or boxplot of the standardized residuals can help locate extraordinary values.

WHAT HAVE WE LEARNED?

We’ve learned how to test hypotheses about categorical variables. We use one of three related
methods. All look at counts of data in categories, and all rely on chi-square models, a new family
indexed by degrees of freedom.

u Goodness-of-fit tests compare the observed distribution of a single categorical variable to an ex-
pected distribution based on a theory or model.

u Tests of homogeneity compare the distribution of several groups for the same categorical variable.
u Tests of independence examine counts from a single group for evidence of an association be-

tween two categorical variables.

We’ve seen that, mechanically, these tests are almost identical. Although the tests appear to be
one-sided, we’ve learned that conceptually they are many-sided, because there are many ways that
a table of counts can deviate significantly from what we hypothesized. When that happens and we
reject the null hypothesis, we’ve learned to examine standardized residuals in order to better un-
derstand patterns as in the table.

Terms
Chi-square model 621, 625. Chi-square models are skewed to the right. They are parameterized by their degrees of

freedom and become less skewed with increasing degrees of freedom.

Cell 619, 626. A cell is one element of a table corresponding to a specific row and a specific column.
Table cells can hold counts, percentages, or measurements on other variables. Or they can hold 
several values.
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Chi-square statistic 621. The chi-square statistic can be used to test whether the observed counts in a frequency distri-
bution or contingency table match the counts we would expect according to some model. It is calcu-
lated as

Chi-square statistics differ in how expected counts are found, depending on the question asked.

Chi-square test of 618, 622. A test of whether the distribution of counts in one categorical variable matches the
goodness-of-fit distribution predicted by a model is called a test of goodness-of-fit. In a chi-square goodness-of-fit

test, the expected counts come from the predicting model. The test finds a P-value from a chi-
square model with degrees of freedom, where n is the number of categories in the categori-
cal variable.

Chi-square test of 627. A test comparing the distribution of counts for two or more groups on the same categorical
homogeneity variable is called a test of homogeneity. A chi-square test of homogeneity finds expected counts

based on the overall frequencies, adjusted for the totals in each group under the (null hypothesis)
assumption that the distributions are the same for each group. We find a P-value from a chi-square
distribution with degrees of freedom, where #Rows gives the number of
categories and #Cols gives the number of independent groups.

Chi-square test of 633. A test of whether two categorical variables are independent examines the distribution of 
independence counts for one group of individuals classified according to both variables. A chi-square test of independ-

ence finds expected counts by assuming that knowing the marginal totals tells us the cell frequencies,
assuming that there is no association between the variables. This turns out to be the same calculation as
a test of homogeneity. We find a P-value from a chi-square distribution with 
degrees of freedom, where #Rows gives the number of categories in one variable and #Cols gives
the number of categories in the other.

Chi-square component 623, 628. The components of a chi-square calculation are

found for each cell of the table.

Standardized residual 631. In each cell of a two-way table, a standardized residual is the square root of the chi-square
component for that cell with the sign of the difference:

When we reject a chi-square test, an examination of the standardized residuals can sometimes re-
veal more about how the data deviate from the null model.

Two-way table 626, 633. Each cell of a two-way table shows counts of individuals. One way classifies a sample
according to a categorical variable. The other way can classify different groups of individuals ac-
cording to the same variable or classify the same individuals according to a different categorical
variable.

Contingency table 633. A two-way table that classifies individuals according to two categorical variables is called a
contingency table.

Skills
u Be able to recognize when a test of goodness-of-fit, a test of homogeneity, or a test of independ-

ence would be appropriate for a table of counts.

u Understand that the degrees of freedom for a chi-square test depend on the dimensions of the
table and not on the sample size. Understand that this means that increasing the sample size in-
creases the ability of chi-square procedures to reject the null hypothesis.

u Be able to display and interpret counts in a two-way table.

u Know how to use the chi-square tables to perform chi-square tests.

(Obs - Exp)2Exp
.

Observed - Expected

(Observed - Expected )2

Expected
,

(#Rows - 1) * (#Cols - 1)

(#Rows - 1) * (#Cols - 1)

n - 1

x2 = a
all cells

(Obs - Exp)2

Exp
.
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642 CHAPTER 26    Comparing Counts

u Know how to compute a chi-square test using your statistics software or calculator.

u Be able to examine the standardized residuals to explain the nature of the deviations from the
null hypothesis.

u Know how to interpret chi-square as a test of goodness-of-fit in a few sentences.

u Know how to interpret chi-square as a test of homogeneity in a few sentences.

u Know how to interpret chi-square as a test of independence in a few sentences.

CHI-SQUARE ON THE COMPUTER

Most statistics packages associate chi-square tests with contingency tables. Often chi-square is available as
an option only when you make a contingency table. This organization can make it hard to locate the chi-square
test and may confuse the three different roles that the chi-square test can take. In particular, chi-square tests
for goodness-of-fit may be hard to find or missing entirely. Chi-square tests for homogeneity are computationally
the same as chi-square tests for independence, so you may have to perform the mechanics as if they were tests
of independence and interpret them afterwards as tests of homogeneity.

Most statistics packages work with data on individuals rather than with the summary counts. If the only in-
formation you have is the table of counts, you may find it more difficult to get a statistics package to compute
chi-square. Some packages offer a way to reconstruct the data from the summary counts so that they can
then be passed back through the chi-square calculation, finding the cell counts again. Many packages offer chi-
square standardized residuals (although they may be called something else).

EXERCISES

1. Which test? For each of the following situations, state
whether you’d use a chi-square goodness-of-fit test, a chi-
square test of homogeneity, a chi-square test of independ-
ence, or some other statistical test:
a) A brokerage firm wants to see whether the type of 

account a customer has (Silver, Gold, or Platinum) 
affects the type of trades that customer makes (in per-
son, by phone, or on the Internet). It collects a random
sample of trades made for its customers over the past
year and performs a test.

b) That brokerage firm also wants to know if the type of
account affects the size of the account (in dollars). It
performs a test to see if the mean size of the account is
the same for the three account types.

c) The academic research office at a large community
college wants to see whether the distribution of
courses chosen (Humanities, Social Science, or Sci-
ence) is different for its residential and nonresidential
students. It assembles last semester’s data and per-
forms a test.

2. Which test again? For each of the following situations,
state whether you’d use a chi-square goodness-of-fit test,

a chi-square test of homogeneity, a chi-square test of inde-
pendence, or some other statistical test:
a) Is the quality of a car affected by what day it was

built? A car manufacturer examines a random sample
of the warranty claims filed over the past two years to
test whether defects are randomly distributed across
days of the work week.

b) A medical researcher wants to know if blood choles-
terol level is related to heart disease. She examines a
database of 10,000 patients, testing whether the cho-
lesterol level (in milligrams) is related to whether or
not a person has heart disease.

c) A student wants to find out whether political leaning
(liberal, moderate, or conservative) is related to choice
of major. He surveys 500 randomly chosen students
and performs a test.

3. Dice. After getting trounced by your little brother in a
children’s game, you suspect the die he gave you to roll
may be unfair. To check, you roll it 60 times, recording the
number of times each face appears. Do these results cast
doubt on the die’s fairness?
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